To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lowell Observatory Near-Earth-Object Search

From Wikipedia, the free encyclopedia

Lowell Observatory Near-Earth-Object Search
Alternative namesLONEOS Edit this at Wikidata
Organization
Observatory code 699 Edit this on Wikidata
LocationFlagstaff, Coconino County, Arizona
Coordinates35°12′10″N 111°39′52″W / 35.2028°N 111.6644°W / 35.2028; -111.6644
Websiteasteroid.lowell.edu/asteroid/loneos/loneos.html Edit this at Wikidata
Location of Lowell Observatory Near-Earth-Object Search
Minor planets discovered: 22,077 [1]
see List of minor planets § Main index

Lowell Observatory Near-Earth-Object Search (LONEOS) was a project designed to discover asteroids and comets that orbit near the Earth. The project, funded by NASA, was directed by astronomer Ted Bowell of Lowell Observatory in Flagstaff, Arizona. The LONEOS project began in 1993 and ran until the end of February 2008.

YouTube Encyclopedic

  • 1/5
    Views:
    654 645
    1 160 737
    118 719
    36 499
    833
  • The Oort Cloud: Crash Course Astronomy #22
  • Asteroid Discovery From 1980 - 2010
  • The Search for Planet X / Planet 9 / Nibiru
  • Sackler Astronomy Lecture: The Search for Planet Nine
  • China Built The World's Biggest Telescope But They've Got No One To Run It

Transcription

Well, look where we are now. With our backs to the Sun, and the planets, asteroids, and comets behind us, we face deep space. There’s nothing between us and the stars, so terribly terribly far away. … or is there? The empty space past Neptune isn’t exactly empty. In episode 21 I mentioned that comets come in two varieties: Those with orbital periods of less than 200 years, which tend to orbit the Sun in the same plane as the planets, and those with longer periods, which have orbits tilted every which-way. This is something of a problem: Comets lose material when they get near the Sun. Over the course of millions of years these comets should evaporate! And yet here we are, 4.56 billion years after the solar system’s birth, and comets still appear in our skies. So, where are they coming from? To see, we’ll have to turn the clock back a wee bit - like, 4.5 billion years. Behold, our forming solar system. Coalescing out of a flat disk of material around the Sun, the inner planets were warmer, smaller, and rocky, while the outer planets were in a region that was colder, and grew huge. Out there in the chillier part of the solar system, water came in the form of ice mixed in with dust and other stuff. These bits would collide and stick together, growing bigger. Some grew to hundreds of kilometers across. But there was a problem: those outer planets. They had a lot of gravity, and any chunk of ice getting too close would either fall into the planet and get assimilated or get kicked into a different orbit. It could then plunge in toward the Sun, or get flung out into deep space. Trillions upon trillions of such iceballs got tossed around by the planets. Even though they were small compared to the planets, they did have a little bit of mass and gravity, so every time the planet pulled hard on them, they also pulled a little bit on the planets, too. It wasn’t much per chunk, but after trillions of events this adds up! A current model of what happened, called the Nice model after the city in France where it was proposed, says that the overall effect of all these encounters was that Saturn, Uranus, and Neptune slowly moved outward from the Sun, while Jupiter moved inward. Neptune would have had the biggest effect on these iceballs, because it bordered the biggest volume of space where they lived. As Neptune migrated outward, close encounters with these chunks of ice flung lots of them into crazy orbits, highly elliptical and tilted with respect to the planets. Repeated more distant encounters tended to more slowly increase the sizes of the orbits of the iceballs, too. We think that this shuffling around of the outer planets is what caused the Late Heavy Bombardment, the intense shower of objects that came screaming down from the outer solar system, scarring planets and moons, a few hundred million years after the planets themselves formed. It’s not known for sure, but all the pieces fit together really well. In the end, today, there are three rather distinct populations of these objects. One is a region shaped like a puffy disk or a doughnut, aligned with the plane of the planets. Icy objects there have stable orbits, unaffected by Neptune. We call this the Kuiper Belt, named after the Dutch astronomer Gerard Kuiper, one of many who initially speculated about the existence of this region. The Kuiper Belt starts more or less just outside Neptune’s orbit, extending from about 4.5 to 7.5 billion kilometers from the Sun. The second region is called the scattered disk. This is composed of the iceballs sent by Neptune into those weird, highly tilted orbits. This overlaps the Kuiper Belt on its inner edge, and extends out to perhaps 150 billion kilometers from the Sun—that’s 25 times farther out than Neptune. Finally, outside those two zones there’s a spherical cloud of icy objects which starts roughly 300 billion kilometers out— 70 times farther out than Neptune, a staggering 2000 times the distance of the Earth from the Sun. And that’s just where it starts: It extends way farther out than that, perhaps as much as a light year, 10 trillion kilometers! This is called the Oort Cloud, after astronomer Jan Oort who first proposed it. The Oort Cloud is the origin of long period comets. Since they orbit the Sun on a sphere with no preferred orientation, they come in toward the inner solar system from random directions in the sky. Many newly discovered comets fall into this category. Their orbits can be extremely long; they start their fall from so far away they swing around the Sun at nearly escape velocity, and their orbits are close to being parabolic. The scattered disk is the source of short period comets. They can still be affected by Neptune, which can alter their orbits to drop them down closer in. They can orbit the Sun on paths between Jupiter and Neptune, meaning eventually they’ll have a close encounter with Jupiter. This can send them in closer to the Sun, and they become short period comets. Tadaaa! That’s how comets are made. So how do we know all this? Well, until 1930 it was pretty much just conjecture. But then an American astronomer, Clyde Tombaugh, discovered the first Kuiper Belt Object: Pluto. Pluto orbits the Sun on an elliptical, mildly-tilted path. Its orbit actually brings it closer to the Sun than Neptune! So how come it never collides with the larger planet? Pluto’s orbit crosses Neptune’s… more or less. Because the orbit is tilted, they never actually physically cross. When Pluto is at perihelion, closest to the Sun, it’s well above the plane of the solar system, far from Neptune’s orbit. Not only that, but Pluto orbits the Sun twice for every three times Neptune does. Because of this, whenever Pluto is closest to the Sun, Neptune is always 90° away in its orbit. That’s many billions of kilometers distant, way too far to affect Pluto. This is mostly coincidence. We’ve seen how orbital resonances can be forced by tides and by gravity. But in this case it’s due to attrition. Once upon a time, billions of years ago, there were probably a lot of objects out by Pluto, with orbits of all different shapes and tilts. But the ones that got too close to Neptune got gravitationally tweaked into different orbits, turning them into comets or flinging them deeper into space. The only ones that could survive just happened to have orbits with that 3:2 or 2:1 resonance with Neptune, keeping them far from Neptune’s influence. Today, those are the only kinds of objects we see with orbits near Neptune. We call these objects plutinos. They’re not really a separate class of object—they’re still Kuiper Belt objects, but a fun and interesting subset of them. Once Pluto was found, astronomers wondered if it might herald a new class of icy objects past Neptune. However, it took more than six decades to find the next one! 1992 QB1 was discovered in 1992, and that opened a sort of gold rush of Kuiper Belt discoveries. We now know of more than a thousand Kuiper Belt Objects. One, called Eris, is very close to Pluto’s size and is more massive — it’s probably rockier than icy Pluto. Pluto is an interesting object. A moon was discovered in 1978. Named Charon, it’s actually about 1/8th the mass of Pluto itself! While Charon orbits Pluto, the moon has enough mass that it can be said that Pluto noticeably orbits Charon, too. In reality, both circle around their mutual center of mass, located between the two. Four more moons were discovered in Hubble images of Pluto in 2005 and 2012. There may be more. Pluto is so small and distant that we don't know much about it… but that may be about to change. [sighs] And now I have to admit to being in a tough spot. As I record this episode of Crash Course, a space probe called New Horizons is heading toward Pluto. It will fly by the tiny world in July 2015. There’s no doubt our view of Pluto will change: There may be more moons discovered, we’ll see surface features for the first time, and much more. But right now I can’t tell you about any of that because we don’t know yet. So I think the best thing to do is leave little Pluto alone for now. But there is a point I want to bring up. Pluto was found in 1930, long before any other Kuiper Belt Object, because it’s much brighter than any other. When it was discovered, it was thought to be about the size of Earth. But over the years better observations showed it to be far smaller than first thought; in fact it’s smaller than Earth’s Moon! Its surface is unusually reflective, shiny, making it look much bigger than it seems. Most other Kuiper Belt denizens are far less reflective, and so are far fainter. If Pluto is King of the Kuiper Belt Objects, it has a lot of loyal subjects. We think the Kuiper Belt may have 100,000 objects in it larger than 100 km wide. If that sounds like a lot, get this: The Oort Cloud, surrounding the solar system, may have trillions of icy bodies in it. Trillions! While we know of lots of Kuiper Belt Objects, we don’t know of any Oort Cloud objects for sure. Two very interesting bodies have been found: Sedna, and VP113. Sedna’s orbit takes it an incredible 140 billion km from the Sun, while VP113 gets about half that far out. Both are on very elliptical orbits. Neither, however, gets close to Neptune, so it’s not at all clear how they got where they are. They may be Oort Cloud objects that were disturbed by passing stars long ago, dropping them closer into the Sun. But no one knows. Yet. Speaking of which… we can calculate how many Oort Cloud objects there should be left over from the formation of the solar system, and it’s about 6 billion. However, calculating how many there are using long period comet observations, you wind up getting about 400 billion. That’s a big discrepancy! Now get this: One idea to solve this discrepancy is that the Sun has stolen comets from other stars. Seriously! Comets should form wherever stars do, and sometimes the Sun passes near other stars. When we see a long-period comet gracing our skies, could we be seeing an object from an alien solar system? Maybe. There is another explanation, but it’s highly speculative. Perhaps there’s another planet in the solar system, well beyond Neptune. It’s possible. Some very preliminary studies have shown that some long-period comets aren’t coming in randomly, but instead have their orbits aligned in a way you might expect if a very distant planet perturbed them. There are a handful of Kuiper Belt Objects aligned in a similar way. NASA’s WISE observatory scanned the skies in infrared, and would’ve seen anything as big as Jupiter or Saturn out to tremendous distances, so any hypothetical planet would have to be smaller. And very distant, probably tens of billions of kilometers out. We’ve seen other stars with planets this far out, so it’s physically possible. But is there one really there? We can’t say either way, yes or no. At least, not yet. This region of the solar system is seriously underexplored. It’s distant, difficult to reach, and above all else extremely huge and numbingly empty. You could hide a whole planet out there, and it would be pretty hard to find. The point? There’s still lots of solar system left to explore. We’ve barely dipped our toes into these dark, frigid waters. Today you learned that past Neptune are vast reservoirs of icy bodies that can become comets if they get poked into the inner solar system. The Kuiper Belt is a donut shape aligned with the plane of the solar system; the scattered disk is more eccentric and is the source of short period comets; and the Oort Cloud which surrounds the solar system out to great distances is the source of long-period comets. These bodies all probably formed closer into the Sun, and got flung out to the solar system's suburbs by gravitational interactions with the outer planets. Crash Course Astronomy is produced in association with PBS Digital Studios. Mosy on over to their channel because they have even more awesome videos. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was directed by Nicholas Jenkins, the script supervisor and editor is Nicole Sweeney, the sound designer is Michael Aranda, and the graphics team is Thought Café.

Hardware

LONEOS, in its final configuration, used a 0.6-meter f/1.8 Schmidt telescope, acquired from Ohio Wesleyan University in 1990, and a Lowell-built 16 megapixel CCD detector. This combination of instruments provided a field of view of 2.88 by 2.88 degrees (8.3 square degrees). It had a maximum nightly scan area of about 1,000 square degrees (covered four times). The instrument could cover the entire accessible dark sky in about a month. The CCD has detected asteroids as faint as visual magnitude 19.8 but its typical limiting visual magnitude was 19.3. The instrument is located at Lowell Observatory's dark sky site, Anderson Mesa Station, near Flagstaff, Arizona, US.

Four computers were used. Two were used for frame reductions, one for telescope pointing control and one for camera control. The camera control software had scripting capability and could control all the other computers.

Technique

Asteroids were found by obtaining four pictures (frames) of the same region of sky, each frame temporally separated by 15 to 30 minutes. The set of four frames were then submitted to reduction software which located all star-like sources on the frame and identified sources that moved with asteroid-like motion. The observer visually examined all asteroid detections that had motion different from a typical main-belt asteroid. Human examination was required because most putative NEO detections were not real but some kind of imaging artifact.

All asteroid positions were converted to equatorial coordinates. Various USNO star catalogs[2] were used for this conversion until 2007. Then the Sloan Digital Sky Survey catalog was used, along with supplemental information from the Carlsberg Catalog[3] and the 2MASS catalog. Asteroid brightness was converted to standard visual magnitude. These data, along with the time of the observations, were sent to the Minor Planet Center (MPC) from which they were distributed to the scientific community. Potential near-Earth objects were handled expeditiously so that other observers could locate the asteroid on the same night and make further observations.

Telescope operation was automated to the extent that the survey could be run all night without observer intervention. However, the telescope was seldom operated in the automatic mode because an observer was required to reduce data promptly and to correct any malfunctions that might have occurred.

Discoveries

Number of NEOs detected by various surveys:
  LINEAR
  NEAT
  Spacewatch
  LONEOS
  CSS
  Pan-STARRS
  NEOWISE
  All others

As of 2017, LONEOS is credited by the Minor Planet Center with the discovery of 22,077 minor planets between 1998 and 2008. The discoveries include main-belt asteroids, near-Earth Objects (NEO) and Mars-crossers.[1] During the period of LONEOS operation, several other NASA funded NEO searches were underway (number of discoveries in parentheses):[1]

Amateur observers made a significant contribution during this time with independent NEO discoveries and by performing follow-up observations of recent discoveries made by the NASA sponsored surveys.[4]

NEO-discovery statistics

The table below lists the number of discoveries made by LONEOS each year of operation. Asteroids thought to be larger than one kilometer in diameter were used as benchmarks in assessing survey completeness. Hence, some table elements have two numbers separated by a slash. The second number represents the number of discoveries larger than one kilometer. The column labeled "Asteroid Observations" is the number of observations sent to the Minor Planet Center. Each asteroid was typically observed four times (once per frame) each night.[5]

Year Asteroid Observations NEAs PHAs Atens Apollos Amors Comets
1998 122,550 7/4 0 0/0 3/2 4/2 1
1999 128,220 14/7 5 2/2 6/3 6/2 6
2000 271,237 38/10 4 3/0 18/5 17/5 6
2001 626,976 42/11 9 4/0 17/4 21/7 7
2002 407,064 21/4 3 3/1 9/0 9/3 3
2003 720,528 54/10 17 5/1 26/3 23/6 2
2004 716,152 39/4 9 5/0 22/4 12/0 4
2005 820,609 42/4 8 6/0 15/1 21/3 8
2006 679,927 19/1 2 0/0 11/1 8/0 2
2007 630,469 12/0 2 2/0 4/0 6/0 3
2008 88,953 1/0 0 0/0 1/0 0/0 0
Total 5,212,685 289/55 59 30/4 131/23 127/28 42

A complete list of LONEOS NEO observations can be found at the NeoDys[6] web site.

Other science

The LONEOS frame archive provides a data set with wide spatial and temporal sky coverage. Other investigators have used these characteristics to produce the following research papers and presentations.

  • Investigating the Distinct Components of the Galactic Stellar Halo RR Lyrae from the LONEOS-I Survey, American Astronomical Society, AAS Meeting #211, #163.02, Huber, Mark; Miceli, A.; Cook, K. H.; Rest, A.; Narayan, G.; Stubbs, C. W.
  • Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey, eprint arXiv:0706.1583,Miceli, A.; Rest, A.; Stubbs, C. W.; Hawley, S. L.; Cook, K. H.; Magnier, J.Johal, E. A.; Krisciunas, K.; Bowell, E.; Koehn, B.
  • Detecting variable objects with the LONEOS photometric database: 15000 square degrees of variability measurements down to 19th magnitude in R, American Astronomical Society, 199th AAS Meeting, #101.10; Bulletin of the American Astronomical Society, Vol. 33, p. 1463, Rest, A.; Miceli, A.; Miknaitis, G.; Covarrubias, R.; Stubbs, C.; Magnier, E.; Koehn, B.; Bowell, T.; Cook, K.; Krisciunas, K.

Highlights

LONEOS staff

Lowell staff:

  • Principal investigator: Dr. Edward Bowell
  • Computer programming: Dr. Bruce Koehn
  • Professional observers: Brian Skiff, Bill Ferris, Mike Van Ness, Shawn Hermann, Jason Sanborn
  • Volunteer observers: Christopher Onken, Jennifer Palguta, Wendy Kelly, Thomas Grimstad, Lori Levy, Robert Cash, Bliss Bliss, James Ashley

Collaborators:

  • CCD performance modeling: Dr. Steve Howell, WIYN/NOAO:
  • Asteroid detection modeling: Dr. Karri Muinonen, University of Helsinki

See also

References

  1. ^ a b c "Minor Planet Discoverers (by number)". Minor Planet Center. 10 July 2017. Retrieved 5 October 2017.
  2. ^ "USNO Image and Catalogue Archive". Archived from the original on 2017-11-04. Retrieved 2008-03-02.
  3. ^ CMC14
  4. ^ Yahoo Groups
  5. ^ Summary of PHA and NEA Discoveries by Discoverers
  6. ^ "NEODyS".
  7. ^ MPEC 1999-H17 : 1999 HF1
  8. ^ NASA Snaps Pics Of 'Space Peanut' As It Passes By Earth, Ted Ranosa, Tech Times, 3 August 2015.
  9. ^ MPEC 1999-X19 : 1999 XS35
  10. ^ MPEC 2001-P40 : 2001 OG108
  11. ^ "JPL Close-Approach Data: 153814 (2001 WN5)" (2011-01-04 last obs (arc=14.9 years)). Retrieved 2011-10-16.
  12. ^ MPEC 2003-T03 : 2003 SQ222
  13. ^ MPEC 2003-T74 : 1937 UB (HERMES)
  14. ^ MPEC 2004-J60 : 2004 JG6

External links

This page was last edited on 26 January 2024, at 18:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.