To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lactose synthase

From Wikipedia, the free encyclopedia

Lactose synthase is an enzyme that generates lactose from glucose and UDP-galactose.

It is classified under EC 2.4.1.22.

It consists of N-acetyllactosamine synthase and alpha-lactalbumin. Alpha-lactalbumin, which is expressed in response to prolactin, increases the affinity of N-acetyllactosamine synthase for its substrate, causing increased production of lactose during lactation.

N-acetyllactosamine synthase falls under the category of beta-1,4-galactosyltransferase, a type-II membrane protein found in the Golgi.[1][2] Alpha-lactalbumin is a Ca2+ binding protein specific to mammary glands. Beta-1,4-galactosyltransferase consists of the catalytic component and alpha-lactalbumin consists of the regulatory component of lactose synthase.[1] Alpha-lactalbumin promotes glucose binding to beta-1,4-galactosyltransferase.[1][2] The beta-1,4-galactosyltransferase catalytic component consists of two flexible loops: small loop and large loop. The small loop consists of a Trp residue (Trp314) with surrounding glycine residues, meanwhile the large loop makes up amino acid residues 345 to 365. The Trp residue in the small loop moves allowing for the sugar nucleotide to be locked into the binding site. This causes a conformational change in the large loop which then creates sites for oligosaccharide and metal ion binding, and protein-protein interactions for alpha-lactalbumin.[3] It is important to maintain a sequential order for these binding events to occur, meaning the conformational change needs to occur after the binding of the substrate. If the conformational change is induced before the binding of the substrate, the substrate cannot bind since the large loop would hide the substrate binding sites after undergoing a conformational change. In such a case, the enzyme will be nonfunctional. [3]

References

  1. ^ a b c Ramakrishnan B, Qasba PK (June 2001). "Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I". Journal of Molecular Biology. 310 (1): 205–18. doi:10.1006/jmbi.2001.4757. PMID 11419947.
  2. ^ a b Amado, M.; Almeida, R.; Schwientek, T.; Clausen, H. (1999-12-06). "Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions". Biochimica et Biophysica Acta (BBA) - General Subjects. 1473 (1): 35–53. doi:10.1016/s0304-4165(99)00168-3. ISSN 0006-3002. PMID 10580128.
  3. ^ a b Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K. (2002-03-15). "Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices". Biochemical and Biophysical Research Communications. 291 (5): 1113–1118. doi:10.1006/bbrc.2002.6506. ISSN 0006-291X. PMID 11883930.

External links


This page was last edited on 4 May 2024, at 01:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.