To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Electro-biochemical reactor

From Wikipedia, the free encyclopedia

Electro-biochemical reactor (EBR) is a type of a bioreactor used in water treatment. EBR is a high-efficiency denitrification, metals, and inorganics removal technology that provides electrons directly to the EBR bioreactor as a substitute for using excess electron donors and nutrients.[1][2][3] It was patented[4] by INOTEC, a bioremediation company based in Salt Lake City, UT.[5]

The EBR technology is based on the principle that microbes mediate the removal of metal and inorganic contaminants through electron transfer (redox processes).[6] In conventional bioreactors, these electrons are provided by excess organic electron donors (e.g., organic carbon sources such as methanol, glucose, etc.). They require excess nutrients/chemicals to compensate for inefficient and variable electron availability needed to adjust reactor ORP chemistry, compensate for system sensitivity (fluctuation), and to achieve more consistent constituent removal. The Electro-Biochemical Reactor directly supplies needed electrons to the reactor and microbes[7][8][9][unreliable source?], using a low applied potential across the reactor cell (1-3 V) at low milli-Amp levels. As a comparison, one molecule of glucose, often used as a cost-effective electron donor, can provide up to 24 electrons under complete glucose metabolism, while a current of 1 mA provides 6.2x10^15 electrons every second.[citation needed] The small amount of power required can even come from a small solar/battery source.[citation needed]

The EBR systems have been successfully demonstrated in the mining and power generation sectors to remove nitrate, nitrite, selenium, cadmium, molybdenum, nickel, tin, uranium, zinc, antimony, copper, lead, silver, vanadium, and mercury.[3][10][5][unreliable source?]

References

  1. ^ Drelich, J (2012). Water in Mineral Processing. SME. pp. 143–153. ISBN 0873353498.
  2. ^ Higgins, J.; Mattes, A.; Stiebel, W.; Wootton, B. (2017). Eco-Engineered Bioreactors: Advanced Natural Wastewater Treatment. CRC Press. ISBN 1351681109.
  3. ^ a b Opara, A.; Adams, D.J.; Martin, A.J (2014). "Electro-biochemical reactor (EBR) technology for selenium removal from British Columbia's coal-mining waste waters". Minerals & Metallurgical Processing. 31: 209–214. doi:10.1007/bf03402472.
  4. ^ Adams, D. Jack. "Patent: Electrobiochemical reactor and related method to enhance microbial/enzyme function in transforming or removing contaminants from a liquid".
  5. ^ a b "Inotec's website".
  6. ^ Rosenbaum, M.; Aulenta, F.; Villano, M.; Angenent, L.T. (2011). "Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?". Bioresource Technology. 102: 324–333. doi:10.1016/j.biortech.2010.07.008.
  7. ^ El-Naggar, M.Y.; Finkel, S.E. (2013). "Live Wires". The Scientist: 38–43.
  8. ^ Lovely, D. (2012). "Electromicrobiology". Annu. Rev. Microbiol. 66: 391–409.
  9. ^ Park, H.I.; Kim, D.; Choi, Y.-J.; Pak, D. (2005). "Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor". Process Biochemistry. 40: 3383–3388. doi:10.1016/j.procbio.2005.03.017.
  10. ^ Adams, J. (2014). "Electro‐Biochemical Reactor (EBR) Technology for Treatment of Leach Pad Waters at the Landusky Mine" (PDF).


This page was last edited on 31 March 2024, at 18:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.