To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Beryllium hydroxide

From Wikipedia, the free encyclopedia

Beryllium hydroxide
Names
IUPAC name
Beryllium hydroxide
Other names
  • Beryllic acid
  • Hydrated beryllia
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.033.048 Edit this at Wikidata
EC Number
  • 236-368-6
1024
MeSH Beryllium+hydroxide
RTECS number
  • DS3150000
UNII
  • InChI=1S/Be.2H2O/h;2*1H2/q+2;;/p-2 checkY
    Key: WPJWIROQQFWMMK-UHFFFAOYSA-L checkY
  • InChI=1/Be.2H2O/h;2*1H2/q+2;;/p-2
    Key: WPJWIROQQFWMMK-NUQVWONBAB
  • O[Be]O
Properties
BeH2O2
Molar mass 43.026 g·mol−1
Appearance Vivid white, opaque crystals
Density 1.92 g cm−3[1]
Melting point (decomposes)
0.0000023965 g/L
6.92×10−22[2]
Acidity (pKa) 3.7[3]
Structure
Linear
Thermochemistry
1.443 J K−1
47 J·mol−1·K−1[4]
-904 kJ mol−1[4]
-818 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Carcinogenic
GHS labelling:
GHS06: Toxic
GHS08: Health hazard
GHS09: Environmental hazard
[5]
Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
0
0
Lethal dose or concentration (LD, LC):
4 mg kg−1 (intravenous, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be)[6]
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be)[6]
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)][6]
Related compounds
Related compounds
Aluminium oxide

Magnesium hydroxide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite.[7] The natural pure beryllium hydroxide is rare (in form of the mineral behoite, orthorhombic) or very rare (clinobehoite, monoclinic).[8][9] When alkali is added to beryllium salt solutions the α-form (a gel) is formed. If this left to stand or boiled, the rhombic β-form precipitates.[10] This has the same structure as zinc hydroxide, Zn(OH)2, with tetrahedral beryllium centers.[11]

YouTube Encyclopedic

  • 1/4
    Views:
    7 139
    1 788
    5 510
    400
  • Molar Mass / Molecular Weight of Ca(OH)2 : Calcium Hydroxide
  • ANOMALOUS PROPERTY OF BERYLLIUM PART 02
  • NEET-UG Phase 2 2016 - Video Solution for Chemistry questions 67 & 68
  • "मैडम मेरी क्युरी" का जीवन - Madame Marie Curie Biography-About Radium Inventor -Nobel Prize Winners

Transcription

Reactions

Beryllium hydroxide is difficult to dissolve in water. With alkalis it dissolves to form the tetrahydroxoberyllate (also known as tetrahydroxidoberyllate) anion, [Be(OH)4]2−.[12] With sodium hydroxide solution:

2 NaOH(aq) + Be(OH)2(s) → Na2[Be(OH)4](aq)

With acids, beryllium salts are formed.[12] For example, with sulfuric acid, H2SO4, beryllium sulfate is formed:

Be(OH)2 + H2SO4 → BeSO4 + 2 H2O

Beryllium hydroxide dehydrates at 400 °C to form the soluble white powder, beryllium oxide:[12]

Be(OH)2 → BeO + H2O

Further heating at higher temperature produces acid insoluble BeO.[12]

References

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
  2. ^ John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99 ed.). CRC Press. pp. 4–47. ISBN 978-1138561632.
  3. ^ Handbook of Chemistry and Physics. Cleveland, Ohio: Chemical Rubber Publishing Company. 1951. pp. 1636–1637.
  4. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. ISBN 978-0-618-94690-7.
  5. ^ "Beryllium Hydroxide". American Elements. Retrieved 5 July 2023.
  6. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  7. ^ Jessica Elzea Kogel, Nikhil C. Trivedi, James M. Barker and Stanley T. Krukowski, 2006, Industrial Minerals & Rocks: Commodities, Markets, and Uses, 7th edition, SME, ISBN 0-87335-233-5
  8. ^ Mindat, http://www.mindat.org/min-603.html
  9. ^ Mindat, http://www.mindat.org/min-1066.html
  10. ^ Mary Eagleson, 1994, Concise encyclopedia chemistry, Walter de Gruyter, ISBN 3-11-011451-8
  11. ^ Greenwood, Norman  N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  12. ^ a b c d Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN 0-12-352651-5
This page was last edited on 31 May 2024, at 23:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.