Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Для термина «Nova» см. также другие значения.

NOvAэксперимент по изучению осцилляций нейтрино[1]. Начал работу в 2014 году[2].

Цель эксперимента

Как теперь известно, нейтрино с определённым лептонным числом (, , и ) не совпадают с состояниями с определённой массой (, и ), а являются их суперпозицией:

где — унитарная матрица 3 х 3. Если массы состояний , и различны (), то нейтрино , , и , которые рождаются, например, в ядерных реакциях, не являются стационарными состояниями, а, будучи предоставлены сами себе, с течением времени превращаются друг в друга и обратно. Это явление, с математической точки зрения, аналогично биениям в системе связанных маятников и известно как осцилляции нейтрино.

Матрица преобразования зависит, в общем случае, от четырёх параметров: трех углов Эйлера и фазы :

Неравенство фазы нулю или означает нарушение CP-инвариантности. Аналогичный параметр в матрице смешивания кварков отвечает за нарушение CP-чётности в распадах K-мезонов.

Величины и измерены в экспериментах с электронными нейтрино: солнечными и реакторными.

Целью эксперимента NOvA является измерение величин , и . Для этого наблюдаются «исчезновения» мюонного нейтрино () и превращения его в электронное (), и аналогичные процессы с участием антинейтрино — , .

Оборудование

В эксперименте используется пучок мюонных нейтрино NuMI, создаваемый ускорителем в Fermilab, и два детектора: ближний на расстоянии 1 км от источника нейтрино и дальний на расстоянии 810 км, в штате Миннесота[3].

Нейтринный пучок создаётся так: протоны, ускоренные до энергии 120 ГэВ, падают на графитовую мишень; при этом, среди прочего, рождаются пионы и каоны. Они фокусируются при помощи магнитного поля специальной конфигурации, а при их распаде возникают нейтрино (антинейтрино), в основном — мюонные[4]. Как сообщают экспериментаторы, это самый мощный нейтринный пучок в мире на данный момент (2018 год)[5].

Дальний детектор весом 14 000 т имеет размеры 15 х 15 х 60 м. Ближний детектор весит 300 т и имеет размеры 4 х 4 х 15 м[6]. Устройство обоих детекторов одинаково — они состоят из поливинилхлоридных ячеек, заполненных жидким сцинтиллятором, а световые импульсы от них собираются специальным оптоволокном. Ближний детектор находится под землёй на глубине 100 м, а дальний — на поверхности[3].

Из-за осцилляций состав частиц, зарегистрированных дальним детектором, должен отличаться от состава первоначального пучка: мюонных нейтрино становится меньше, и появляются электронные нейтрино, которых в нём не было.

Результаты

С февраля 2014 по февраль 2017 года эксперимент проводился с нейтринным, с февраля 2017 года по настоящее время — с антинейтринным пучком. За это время накоплена статистика, соответствующая 8.85·1020 столкновениям протонов с мишенью в первом и 6.91·1020 во втором режиме (поскольку непосредственно измерить интенсивность нейтринного пучка невозможно, её оценивают косвенно по количеству протонов в первичном пучке)[6].

За это время (с учётом отбора событий по разнообразным критериям, подробно описанным в оригинальных статьях) в дальнем детекторе зарегистрировано[5]:

  • мюонных нейтрино:
    • в нейтринном режиме — 113 событий (в отсутствие осцилляций ожидалось 730)
    • в антинейтринном режиме — 65 событий (без осцилляций было бы 266)
  • электронных нейтрино:
    • в нейтринном режиме — 58 событий (при оценке фона 15 событий)
    • в антинейтринном режиме — 18 (при ожидании фона 5.3).

Совместный анализ данных нейтринного и антинейтринного режимов указывает[5] на прямую иерархию масс () на уровне достоверности , наиболее вероятные значения фазы , угла смешивания и разности масс .

Примечания

  1. Илья Ехлаков Эксперимент NOνA
  2. Илья Хель 10 октября 2014 года Эксперимент NOvA по исследованию нейтрино начал работу
  3. 1 2 arXiv:1806.00096
  4. arXiv:1601.05022
  5. 1 2 3 Материалы XXVIII международной конференции Neutrino 2018, Гейдельберг, 4-9 июня 2018 года (англ.). — doi:10.5281/zenodo.1286758.
  6. 1 2 Эксперимент NOvA получил первые — и неожиданные — результаты с пучком антинейтрино

Ссылки

Эта страница в последний раз была отредактирована 3 марта 2021 в 04:20.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).