Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

AK-моде́ль (модель Ребело, англ. AK model) — эндогенная модель экономического ростa, в которой устойчивый экономический рост достигается за счет неубывающей предельной производительности капитала, понимаемого в модели как совокупность физического и человеческого капитала, в производстве инвестиционных товаров. AK-модель преодолела недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям, и показала возможность негативного воздействия фискальной политики на долгосрочные темпы экономического роста. Однако сильная чувствительность темпов экономического роста к изменениям налоговой ставки, предполагаемая по модели, не подтверждается эмпирически. Также в модели не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Разработана в 1990 году Серджио Ребело (англ.).

История создания

В ранних неоклассических моделях экономического роста (модели Солоу и Рамсея — Касса — Купманса) темпы научно-технический прогресса, являющего источником экономического роста, задавались экзогенно, а капитал как фактор производства характеризовался убывающей отдачей от масштаба. Чтобы объяснить темпы экономического роста, исследователи стали использовать более широкую трактовку понятия «капитал», включая в него и человеческий капитал. Эта концепция была впервые предложена Фрэнком Найтом в 1944 году[1]. На основании такой широкой трактовки капитала традиционно используемую в макроэкономических моделях функцию Кобба — Дугласа сменила производственная функция вида , которая впервые была предложена в 1937 году Джоном фон Нейманом (на английский язык работа была переведена в 1945 году)[2][3]. Простейший вариант AK-модели (с экзогенной ставкой сбережения) был предложен Робертом Солоу в 1970 году, однако сам Солоу посчитал её неинтересной[4][5]. Для объяснения нормы сбережений как следствия решений экономических агентов, как и в модели Рамсея — Касса — Купманса, используется межвременная функция полезности из работы Фрэнка Рамсея 1928 года[6]. После Роберта Солоу многие исследователи предлагали свои версии АК-модели, иногда под этим названием подразумеваются некоторые схожие модели (см. ниже), но в качестве модели, объединяющей человеческий и физический капитал в производственную функцию вида , с помощью которой объясняются темпы экономического роста, в обзорных источниках используется модель, предложенная Серджио Ребело (англ.)[7][8][5] в работе «Анализ зависимости долгосрочной фискальной политики и темпов экономического роста», опубликованной в апреле 1990 года[9] и изданной в июне 1991 года в журнале Journal of Political Economy (англ.)[10].

Описание оригинальной модели

Базовые предпосылки модели

В модели рассматривается закрытая экономика. Фирмы максимизируют свою прибыль, а потребители — полезность. Экономика функционирует в условиях совершенной конкуренции. Производится два разных типа продуктов: один используется, для потребления , другой - для инвестиций . Норма выбытия капитала задается экзогенно. В качестве работника и потребителя в модели выступает бесконечно живущий индивид (или домохозяйство). Предполагается, что между разными поколениями существуют альтруистические связи, при принятии решений домохозяйство учитывает ресурсы и потребности не только настоящих, но и будущих своих членов, что делает его решения аналогичным решениям бесконечно живущего индивида. Время изменяется непрерывно[9].

Предпосылка о закрытой экономике означает, что произведенный продукт тратится на инвестиции и потребление, экспорт/импорт отсутствуют, сбережения равны инвестициям: [9].

Капитал , трактуемый в модели как совокупность физического и человеческого капитала, распределяется между двумя секторами, производящими инвестиционные и потребительские товары[9][11]:

,
где — совокупный запас капитала в момент времени , — капитал, используемый в производстве потребительских товаров в момент времени , — капитал, используемый в производстве инвестиционных товаров в момент времени .

Если обозначить долю капитала, задействованного в производстве потребительских товаров в момент времени как , , то и .

Производственная функция в секторе потребительских товаров описывается функцией Кобба — Дугласа[9][12]:

,
где — совокупное потребление в момент времени , — потребление отдельного индивида в момент времени , трудовые ресурсы в момент времени , — технологический параметр, .

Производственная функция в секторе инвестиционных товаров не включает в себя труд как фактор производства, зависит только от капитала и описывается функцией[9][11]:

,
где — технологический параметр, .

Население , равное в модели совокупным трудовым ресурсам, растет с постоянным темпом : .

Индивид предлагает одну единицу труда (предложение труда неэластично) и получает заработную плату (в единицах потребительского товара). Функция полезности бесконечно живущего индивида-потребителя является сепарабельной, то есть потребление прошлых и будущих периодов не влияют на текущую полезность, влияет только потребление текущего периода. Она удовлетворяет условиям и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю): , а также обладает постоянной эластичностью замещения , и имеет вид[9]:

,
где  — коэффициент межвременного предпочтения потребителя, .

Доходы индивида состоят из заработной платы и поступлений от активов . Активы индивида могут быть как положительными, так и отрицательными (долг). Процентная ставка по вложениям и по долгу в модели принята одинаковой. В связи с этим в модели присутствует условие отсутствия схемы Понци (финансовой пирамиды): нельзя бесконечно выплачивать старые долги за счет новых[13][14]:

,
где — в закрытой экономике весь капитал принадлежит резидентам, а величина активов индивида совпадает с запасом капитала на одного работающего.

Накопление капитала в момент времени равно разности произведенных инвестиционных товаров и выбытия капитала[9][11]:

,
где — норма выбытия капитала, — производная капитала по времени.

Для поиска решения модели используются удельные показатели[9]: выпуск на единицу труда , запас капитала на единицу труда , потребление на единицу труда , инвестиции на единицу труда .

В интенсивной форме производственные функции имеют вид: (сектор инвестиционных товаров) и (сектор потребительских товаров).

Задача фирмы

Задача фирм, работающие в двух секторах, состоит в максимизации прибыли ( и в потребительском и инвестиционном секторе соответственно)[9][15]:

В условиях совершенной конкуренции это означает, что предельная производительность капитала в производстве инвестиционных и потребительских товаров должна быть одинакова (), при условии статичности цен[9][15]:

,
,
где — цена инвестиционного товара в момент времени , — цена потребительского товара в момент времени . Из условия, что , следует[9][15]:
.

Задача потребителя

Доходы индивида расходуются либо на потребление, либо на увеличение активов (сбережений). Население растет темпом , поэтому активы на одного человека сокращаются с этим же темпом, то есть скорость изменения активов в каждый момент времени уменьшаются на . Таким образом, учитывая, что в этой версии модели производная активов по времени , выступающая в качестве бюджетного ограничения индивида, имеет вид[13]:

.

Как и в модели Рамсея — Касса — Купманса, задача потребителя заключается в максимизации полезности при бюджетном ограничении и при ограничении на отсутствие схемы Понци. Поскольку бюджетное ограничение представлено как производная по времени, то задача потребителя представлена в виде задачи динамической оптимизации. Её решение можно найти путём построения функция Гамильтона и нахождения её максимума с помощью принципа максимума Понтрягина[16].


Искомое решение имеет вид правила Кейнса — Рамсея[13][9]:

,
где — производная потребления на душу населения по времени, — темп роста потребления на единицу населения.

Общее равновесие в модели

С учетом изменения цен потребительского и инвестиционного товаров, в равновесном состоянии доходности на капитал в производстве инвестиционных () и потребительских () товаров должны удовлетворять условию[15][9]:

,
где — производная цены инвестиционного товара по времени, — производная цены потребительского товара по времени.

На траектории стабильного роста . Если выбрать потребительский товар в качестве меры стоимости, , то . Динамика цены инвестиционного товара определяется из равенства доходностей на капитал в секторах потребительских и инвестиционных товаров[20]:

.

С учетом уравнения доходности капитала в производственном секторе, итоговое уравнение для примет вид[20]:

.

Если подставить значение в уравнение динамики потребления, то оно примет вид[20]:

.

Производная производственной функции в секторе потребительских товаров по времени выглядит следующим образом[20]:

.

Решением системы из этих двух уравнений и будут равновесные темпы роста капиталовооружённости (), выпуска на единицу труда (), заработной платы () и потребления на единицу труда ()[21][9]:

,
,

Таким образом, в модели темпы роста выпуска и потребления являются постоянными, и не падают с ростом запаса капитала. Поскольку в модели отсутствуют внешние эффекты, найденное конкурентное равновесие является оптимальным по Парето, и не существует централизованного равновесия с более высокими темпами роста, в отличие от моделей обучения в процессе деятельности и Удзавы — Лукаса[22].

Фискальная политика в модели

Совокупные налоговые поступления можно записать следующим образом[9]:

,
где — совокупные налоговые поступления в момент времени , — суммарная ставка налогов на потребление (например, НДФЛ, НДС), — суммарная ставка налогов на инвестиции (например, налог на прибыль).

Налоги на потребление не влияют на темпы роста капиталовооружённости и выпуска , они лишь приводят к уменьшению текущего уровня потребления. Но налоги на инвестиции оказывают влияние на темпы роста В этом случае оптимальные темпы роста капиталовооружённости и выпуска изменится следующим образом[9]:

,
.

Таким образом, в отличие от модели Рамсея — Касса — Купманса, в которой рост налогов вызывал только снижение текущего потребления, но не влиял на темпы экономического роста, в рассматриваемой модели даже небольшие изменения в налоговой политике могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста (при определенных значениях параметров, они даже могут стать отрицательными)[23].

Упрощенная версия модели

Отличия от оригинальной модели

Во многих работах встречается упрощенная версия модели, в которой рассматривается односекторная экономика вместо двухсекторной в оригинальной модели: производится только один товар , используемый как для потребления, так и для инвестиций[7][8][24]. В этом случае в качестве совокупной производственной функции выступает производственная функция сектора инвестиционных товаров из оригинальной модели[25][26]:

Поскольку производится только один товар, то больше нет необходимости в разных ценах и , и в этой версии, как и в модели модели Рамсея — Касса — Купманса, работники снова получают заработную плату в натуральной величине[25][26].

Задача фирмы

Задача фирмы состоит в максимизации прибыли [27]:

Поскольку фирмы функционируют в условиях совершенной конкуренции, то предельные производительности факторов производства равны их ценам[27][14]:

,
.

Задача потребителя

Задача потребителя полностью аналогична задаче в оригинальной модели. Её решение имеет также вид правила Кейнса — Рамсея (англ.)[14][13]:

,

Общее экономическое равновесие

В равновесном состоянии темпы роста потребления , капитала и выпуска равны[16][28]:

.

Учитывая, что , после решения задач фирмы и потребителя, можно записать следующую систему дифференциальных уравнений[16][14]:

при условии:
.

Из решения этой системы уравнений находится равновесная норма сбережения [29][30]:

.

В итоге, и в упрощенной модели темпы роста выпуска и потребления также являются постоянными, и не падают с ростом запаса капитала. Поскольку в модели отсутствуют внешние эффекты, найденное конкурентное равновесие также является оптимальным по Парето, и не существует централизованного равновесия с более высокими темпами роста[22].

Фискальная политика в модели

Поскольку в упрощенной версии модели индивиды получают доход только от владения капиталом (), то и налоги могут быть в ней введены только на этот источник дохода. С учетом налогов, динамика активов потребителя примет вид[22]:

,
где — ставка налога.

В этом случае равновесные темпы роста потребления , капитала и выпуска в зависимости от ставки налога будут равны[22][31]:

.

Норма сбережений также меняется в зависимости от[22][31]:

.

Как и в оригинальной модели, в упрощенной версии небольшие изменения в налоговой политике тоже могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста (при определенных значениях параметров, они даже могут стать отрицательными). В целом, при более простых вычисления, упрощенная версия модели приходит к тем же общим выводам, что и оригинальная модель, за исключением вывода относительно уровня заработной платы и темпов его роста . Но это важное различие, оно предполагает, что доля капитала в национальном доходе должна асимптотически стремиться к 100%[23].

Другие модели с расширенной трактовкой капитала

В модели Серджио Ребело (англ.) человеческий и физический капитал объединены в одну переменную. Существуют также ряд других моделей, которые приходят к аналогичным выводам, но исходя из иных предпосылок. Вместе с рассматриваемой моделью из называют моделями экономического роста с расширенной трактовкой капитала или моделями эндогенного роста первого поколения[32].

Модель обучения в процессе деятельности

В модели обучения в процессе деятельности производственная функция каждой отдельной фирмы удовлетворяет неоклассическим предпосылкам, однако общий запас капитала посредством эффекта перелива знаний повышает производительность труда в экономике. Модель также демонстрирует возможность устойчивого экономического роста без экзогенно задаваемых темпов научно-технического прогресса, но, поскольку устойчивый экономический рост в модели достигается за счет внешних эффектов от совокупного запаса капитала, который каждая отдельная фирма считает постоянной величиной, то достигаемое равновесие не является оптимальным по Парето. Потому в централизованном равновесии в модели темпы роста выпуска и потребления оказываются выше, чем в децентрализованном. Разработана Полом Ромером в 1986 году[33].

Модель Удзавы — Лукаса

В модели Удзавы — Лукаса производственная функция каждой отдельной фирмы также удовлетворяет неоклассическим предпосылкам, однако общий запас человеческого капитала (в форме среднего уровня образования) повышает производительность труда в экономике. Модель демонстрирует возможность устойчивого экономического роста без экзогенно задаваемых темпов научно-технического прогресса, но, поскольку устойчивый экономический рост в модели достигается за счет внешних эффектов от среднего уровня образования, который каждая отдельная фирма считает постоянной величиной, то достигаемое равновесие не является оптимальным по Парето. Потому в централизованном равновесии в модели темпы роста выпуска и потребления оказываются выше, чем в децентрализованном. Разработана Робертом Лукасом на основе идей Хирофуми Удзавы в 1988 году[34].

Модель Мэнкью — Ромера — Вейла

Модель Мэнкью — Ромера — Вейла является расширенной за счёт включения человеческого капитала версией модели Солоу, она разработана Грегори Мэнкью, Дэвидом Ромером и Дэвидом Вейлом (фр.) в 1990 году[35]. В том случае, если в модели Мэнкью — Ромера — Вейла вместо экзогенной ставки сбережений вводится функция полезности потребителя, и если выполняется условие , то она превращается в полный аналог упрощенный версии AK-модели[36].

Преимущества, недостатки и дальнейшее развитие модели

AK-модель преодолевает недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям (модель Рамсея — Касса — Купманса, модель пересекающихся поколений) благодаря тому, что понятие «капитал» в модели трактуется как совокупность физического и человеческого капитала, что позволяет обосновать неубывающую предельную производительность капитала в секторе инвестиционных товаров, обеспечивающую постоянные темпы экономического роста[37].

Темпы экономического роста в модели зависят от поведения потребителей, которые выбирают субъективную ставку дисконтирования и институциональных параметров, определяющих налоговую нагрузку. В модели показано негативное влияние повышения налогов на темпы экономического роста. Даже небольшие изменения в фискальной политике могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста, которые при определенных значениях параметров даже могут стать отрицательными[38]. Однако столь сильная чувствительность к изменениям налоговой ставки рядом экономистов считается недостатком модели: в развитых странах существенно различается налоговая нагрузка, но это не приводит к сопоставимым различиям в темпах роста ВВП[23].

AK-модели также иногда приписывается вывод о том, что доля капитала в национальном доходе должна асимптотически стремиться к 100%. Но это верно только для упрощённой версии модели, в оригинальной версии этот недостаток преодолевается[23].

Модель не предполагает ни абсолютной, ни условной конвергенции, так как темпы роста не падают с ростом объёма выпуска, а значит, в рамках её предпосылок бедные страны не могут догнать богатые[39]. Это более реалистичный вывод, чем у моделей Солоу и Рамсея — Касса — Купманса, предполагавших, что при одинаковых структурных параметрах бедные страны должны догонять богатые. В большинстве случаев бедные страны действительно не могут догнать богатые[40], хотя единичные примеры таких стран известны (японское экономическое чудо, корейское экономическое чудо). Более того, в AK-модели существующие между странами разрывы со временем только нарастают, а значит, бедные страны не только не могут догнать богатые, но и все больше отстают от них. Такой вывод представляется чрезмерно пессимистичным по отношению к развивающимся странам и эмпирически не подтверждается[41].

Некоторые исследователи в качестве достоинства модели также отмечают её простоту и отсутствие переходной динамики[42]. Но следствием её простоты является то, что в понятие «капитал» включается много различных типов деятельности: физический капитал, человеческий капитал, обучение, создание новых продуктов. Из-за того, что столь различные понятия объединены в одну переменную , модель носит достаточно ограниченный характер[43].

Вместе с тем, отмечается, что в модели отсутствует технологический прогресс в явном виде и не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли[42]. Альтернативный путь развития — импорт и внедрение новых технологий из более развитых стран — также не отражён в модели[42].

Примечания

  1. Knight, 1944.
  2. Neumann, 1945.
  3. Palgrave (Howitt), 2018, с. 3633.
  4. Solow R., 1970.
  5. 1 2 Аджемоглу, 2018, с. 620.
  6. Ramsey, 1928.
  7. 1 2 Шараев, 2006, с. 71—76.
  8. 1 2 Барро, Сала-и-Мартин, 2010, с. 268—269.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Rebelo, 1990.
  10. Rebelo S., 1991.
  11. 1 2 3 Аджемоглу, 2018, с. 608.
  12. Аджемоглу, 2018, с. 607.
  13. 1 2 3 4 Аджемоглу, 2018, с. 597.
  14. 1 2 3 4 Шараев, 2006, с. 73.
  15. 1 2 3 4 Аджемоглу, 2018, с. 609.
  16. 1 2 3 Аджемоглу, 2018, с. 599.
  17. Туманова, Шагас, 2004, с. 230.
  18. Аджемоглу, 2018, с. 445.
  19. Palgrave (Kamihigashi), 2018, с. 13860.
  20. 1 2 3 4 Аджемоглу, 2018, с. 610.
  21. Аджемоглу, 2018, с. 610—611.
  22. 1 2 3 4 5 Аджемоглу, 2018, с. 602.
  23. 1 2 3 4 Аджемоглу, 2018, с. 603.
  24. Аджемоглу, 2018, с. 596—603.
  25. 1 2 Аджемоглу, 2018, с. 596.
  26. 1 2 Шараев, 2006, с. 71.
  27. 1 2 Аджемоглу, 2018, с. 598.
  28. Шараев, 2006, с. 74.
  29. Шараев, 2006, с. 75.
  30. Аджемоглу, 2018, с. 601.
  31. 1 2 Шараев, 2006, с. 76.
  32. Аджемоглу, 2018, с. 595—596.
  33. Romer, 1986.
  34. Lucas, 1988.
  35. Mankiw, Romer, Weil, 1990.
  36. Шараев, 2006, с. 101.
  37. Шараев, 2006, с. 86.
  38. Шараев, 2006, с. 86—87.
  39. Туманова, Шагас, 2004, с. 220.
  40. Аджемоглу, 2018, с. 698.
  41. Аджемоглу, 2018, с. 619.
  42. 1 2 3 Аджемоглу, 2018, с. 618.
  43. Туманова, Шагас, 2004, с. 216.

Литература

Эта страница в последний раз была отредактирована 7 декабря 2020 в 20:23.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).