Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

6SN7
Советский двойной триод 6Н8С — один из множества зарубежных аналогов американской 6SN7. Хорошо видна стеклянная гребешковая ножка, несущая конструктивную арматуру лампы.

Советский двойной триод 6Н8С — один из множества зарубежных аналогов американской 6SN7. Хорошо видна стеклянная гребешковая ножка, несущая конструктивную арматуру лампы.
Двойной низкочастотный триод
Прототип 6C5 → 6J5 → 6F8G[1]
Разработчик RCA[1]
Начало выпуска 1939[1]
Цоколь октальный 8BD
Напряжение накала 6,3 В
Ток накала 0,6 А
Номинальный режим усилителя в классе А1[2]
Напряжение анода 250 В
Напряжение управляющей сетки -8 В
Ток анода 9 мА
Коэффициент усиления 20
Крутизна характеристики 2,6 мА/В
Внутреннее сопротивление 7,7 кОм
Логотип Викисклада Медиафайлы на Викискладе

6SN7 — семейство[3] электронных ламп — двойных низкочастотных триодов косвенного накала со средним коэффициентом усиления напряжения, — выпускающееся с 1939 года. Многочисленные варианты базовой лампы 6SN7GT (12SN7GT, 5692, 6Н8С, 7N7, CV1988 и другие) и её одиночного аналога 6JGT различаются параметрами предельно допустимых режимов, напряжением накала, формой баллона и типом цоколя, но все имеют одинаковое внутреннее устройство и почти одинаковые электрические параметры[3]. Нелинейные искажения и разброс коэффициента нелинейных искажений 6SN7 существенно меньше, чем у миниатюрных ламп послевоенной разработки[3][4].

Благодаря удачному сочетанию характеристик 6SN7 широко применялась вначале в военной, а затем в гражданской радиоэлектронике. Резервы, заложенные в конструкцию лампы, позволили выпустить на её основе специализированные варианты для работы в низковольтных (26 В) и высоковольтных (до 450 В) цепях, лампы с удвоенной мощностью рассеяния на аноде и лампы особо высокой надёжности для системы противовоздушной обороны США. Хорошие импульсные характеристики, надёжность и малая потребляемая мощность оказались востребованы конструкторами электронно-вычислительных машин, а низкий уровень нелинейных искажений — конструкторами телевизоров и высококачественной звуковой аппаратуры.

Разработка

В середине 1920-х годов промышленность США начала выпуск первых серийных ламп с оксидными катодами косвенного накала[5]. Новинка позволила отказаться от неудобных накальных батерей и питать подогреватели катодов переменным током промышленной частоты (в лампах прямого накала, используемых в детекторах и каскадах предварительного усиления, такое решение приводило к непримлемо высоким помехам)[5]. Отраслевой стандарт триода косвенного накала (пятиштырьковый цоколь UY, напряжение накала 2,5 В) сложился к 1927 году, а образцом этого поколения ламп стала серия 227 производства RCA — родоначальница всех приёмно-усилительных триодов со средним коэффициентом усиления напряжения [5].

Развитием серии 227 и её упрощённого варианта 27 стали выпущенные в 1927—1932 годы триоды массовых серий 37, 56, 67 и 76[1]. В серии 56 (1931) ещё использовалось неудобное на практике напряжение накала 2,5 В, а в сериях 67 (1931 год), 37 и 76 (1932 год) был применён новый стандарт — питание накала напряжением 6,3 В, что позволяло подключать накал к тогдашним автомобильным аккумуляторам)[1]. Вскоре ушёл в прошлое и пятиштырьковый цоколь: с началом массового выпуска пентодов его вытеснил восьмиштырьковый октальный цоколь[1]. Первый октальный, ещё одиночный, триод 6С5 (RCA, 1935 год) фактически представлял собой пентод 6J7 в триодном включении, а годом спустя Tungsram запустила в серию первый настоящий триод в октальном исполнении — 6C5G (суффикс G обозначал стеклянное исполнение, в отличие от цельнометаллических 6C5 и 6J7)[1]. Лампы этих ранних серий широкого применения не нашли; первым действительно массовым октальным триодом стал 6J5 (RCA, 1937 год)[1]. Все эти лампы характеризовались средним коэффициентом усиления (μ=20…35) и были рассчитаны на работу в детекторах, каскадах предварительного усиления низкой частоты и импульсных схемах[1]. Выпуск триодов с высоким коэффициентом усиления (μ≈100) ещё не начался, но параллельно семейству потомков 227 развивался класс двойных триодов для двухтактных выходных каскадов УНЧ[1]. Эта ветвь эволюции триода началась в 1933 году с выпуском серии 19, достигла расцвета в 1936 году c выпуском 6N7[6] (имевшей отличную от 6SN7 конструкцию и совершенно иное назначение[7]) и угасла вскоре после Второй мировой войны[1].

Непосредственные предшественники 6SN7 — двойные октальные триоды 6F8G и 6C8G — были выпущены RCA в конце 1937 года[1]. По оставшимся неизвестными причинам сетка одного из триодов этих ламп была подключена не к цоколю, а к верхнему колпачку баллона[1]. Возможно, конструкторы пытались уменьшить нежелательную паразитную связь входной цепи с цепью накала; на практике это решение оказалось ненужным. Лампы хорошо зарекомендовали себя в импульсной технике (в частности, 6C8G применялась в компьютере Атанасова — Берри), но не стали массовыми[1]. Два года спустя, в конце 1939 года, RCA выпустила упрощённый вариант 6F8G в простом стеклянном баллоне[1]. Новинка получила обозначение 6SN7GT (суффикс GT обозначал стеклянный баллон компактной цилиндрической, в отличие от крупногабаритной G, формы)[8]. В следующем 1940 году компания Sylvania — главный конкурент RCA — выпустила точную копию 6SN7 в локтальном исполнении — 7N7[9]. Первая цифра 7 в обозначении этой лампы — исторический курьёз, маркетинговая уловка производителя; в действительности 7N7 была рассчитана на стандартное напряжение накала 6,3 В[10].

Распространение

7N7 успеха не имела, зато электрически идентичная ей 6SN7GT удачно подошла под требования военных заказчиков и в годы Второй мировой войны производилась в огромных, беспрецедентных для мирного времени, объёмах[1]. Главной «военной специальностью» 6SN7 было не усиление сигналов, а формирование импульсов тока в радиолокационных станциях[11]. Лампы, поставлявшиеся в Армию США в 1941—1942 годы, маркировались обозначением VT-231, а поставки во флот — 6SN-7GT; с начала 1943 года армейская номенклатура была упразднена, и все поставки базовой 6SN7 в вооружённые силы маркировались 6SN7-GT[12]. Авиационные варианты с питанием накала напряжением 12 и 26 В получили обозначения 12SN7GT и 25SN7GT[9] (кроме того, в семействе были и лампы с редким напряжением накала 8,4 В[13]). За ними последовали низковольтные авиационные лампы, рассчитанные на питание анода бортовым напряжением 26 В. В 1942 году Tung-Sol[en] вывела на рынок низковольтные лампы специальной разработки 6AH7GT и 12AH7GT[9], а компания RCA c 1946 года выпускала лампы 12SX7GT[9] — серийные 12SN7GT, отобранные по критерию наибольшей крутизны анодно-сеточной характеристики при низком анодном напряжении[14].

Параллельно шёл обратный процесс — разгон базовой 6SN7 для работы с бо́льшими напряжениями, токами и мощностями. К 1948 году конструкторы довели допустимое анодное напряжение с 250 до 450 В, ток катода в импульсе до 300 мА, а допустимую анодную мощность с 2,5 до 5 Вт на триод (варианты 6SN7GTA и 6SN7GTB)[1]. В том же 1948 году General Electric выпустила разработанную RCA «красную серию» (англ. Special Red) 5692 — единственный в истории вариант 6SN7 особо высокой надёжности[9]. Само же название 6SN7 (без суффиксов) для обозначения серийных ламп никогда не использовалось: в американской номенклатуре такая комбинация обозначала бы металлическую лампу, а все лампы семейства 6SN7 выпускались только в стеклянных баллонах[8][11].

Вслед за США «военные» 6SN7 были выпущены в Великобритании под маркировкой CV181 и CV1988; кроме того, весьма близки́ к 6SN7 были разработанные самими британцами B65 (Marconi-Osram Valve[en]) и ECC30…ECC35 (Mullard)[9]. Вариант 6SN7GT, производившийся в СССР, вначале получил обозначения 6Н8[15] и 6Н8М, а после 1950 года — 6Н8С[16]; под тем же обозначением, 6Н8С, лампу выпускали в КНР[9]. Копии и клоны 6SN7 производились в Австралии, Германии, Индии, Италии, Нидерландах, Франции, Швеции, Японии и в странах Восточной Европы[9]. Исчерпывающий список всех послевоенных производителей и всех конструктивных вариантов составить невозможно: в своё время они не представляли особого интереса для историков и коллекционеров, а затем информация о них была навсегда утрачена[17].

Применение

Малая ламповая ЭВМ «Урал-1». СССР, 1954—1955

6SN7 широко применялась в ранней вычислительной технике. В первом программируемом компьютере ENIAC (1943—1945) 6SN7GT составляли примерно половину из 17 468 ламп[18][19]. Базовой ячейкой памяти ENIAC служил триггер на одной 6SN7; в каждом десятичном разряде регистра-аккумулятора использовались десять 6SN7 и восемнадцать других ламп[19]. Для повышения надёжности лампы питались пониженным до 5 В напряжением накала[18], однако ошибочное решение обойтись всего лишь шестью накальными трансформаторами на каждый регистр-аккумулятор свело на нет все усилия конструкторов[19]. Обычные лампы «гражданских» серий, работавшие с разными потенциалами катодов, но подключенные к общей накальной шине, испытывали запредельно высокие напряжения подогреватель-катод и преждевременно выходили из строя[19].

6SN7WGT производства Raytheon, США. Маркировка JAN декларирует соответствие военной спецификации 1943 года[12]

Первый британский компьютер SSEM (1947—1948) строился на пентодах EF50, а в строившемся в те же годы APEXC[en] (1947—1948) британские конструкторы вынужденно применили VR102 — функциональный аналог 6SN7[20]. Сетка одного из триодов VR102 была выведена на верхний колпачок, что крайне затрудняло монтаж по сравнению с 6SN7[20]. В австралийском CSIRAC использовались обычные дешёвые 6SN7[21], а в построенном IBM командном центре ПВО США AN/FSQ-7[en] — лампы «красной серии» 5692[22]. В СССР 6Н8М и 6Н8С служили в первых компьютерах МЭСМ[23] (1949—1950) и М-1[24] (1950—1951) и в последовавших за ними машинах семейств «Урал»[25], «Стрела» и БЭСМ[26]. По одним отчётам, срок службы советских ламп в вычислительной технике составлял 8—9 тысяч часов[23], по другим 15 тысяч часов, причём время наработки на отказ зависело не столько от режима работы лампы, сколько от жёсткости установленных критериев годности[26].

В послевоенной гражданской промышленности 6SN7 применялась в устройствах, требовательных к линейности усиления — в генераторах и усилителях кадровой развёртки телевизоров и в предоконечных каскадах высококачественных радиоприёмников и УНЧ[9]. Например, в классическом усилителе Уильямсона 6SN7 или её британские функциональные аналоги L63 и B65 применялись в трёх каскадах из четырёх (входной, фазоинвертирующий и предоконечный каскады)[27][28]. Лампа широко использовалась и в низкокачественных УНЧ трансляционных репродукторов, а в гитарных усилителях, напротив, встречалась редко[22]. Из производителей гитарных и концертных усилителей систематически использовали 6SN7 лишь Gibson, Hammond и Leslie[en][22].

Примерно в 1956 году применение 6SN7 в серийных устройствах прекратилось: на смену октальным лампам пришло новое поколение миниатюрных ламп[22]. В 1970-е годы производители бытовой аппаратуры перешли на транзисторы; единственной нишей рынка, где лампы никогда не сдавали своих позиций, были гитарные усилители — однако именно в них высокая линейность 6SN7 была не достоинством, а недостатком. В конце XX века мировой спрос на 6SN7 не превышал 10 тысяч ламп в год — слишком мало, чтобы окупить расходы полноценного крупносерийного производства[4] (для сравнения, спрос на «гитарную» лампу 12AX7 в 2000 году превышал один миллион штук[29]). Последнее такое производство — калужский «Восход» — прекратило выпуск ламп в 1990-е годы[4]. В XXI веке 6SN7 и вариант CV181 в крупногабаритном баллоне выпускаются в КНР малой серией компанией Shuguang (бывший 770-й радиозавод)[30].

Электрические характеристики

В сравнительной таблице приведены справочные данные пяти характерных образцов семейства: базовой 6SN7GT, её советского аналога 6Н8С, британской военной CV1988, низковольтной 12SX7-GT и умощнённой 6SN7GTB.

Несмотря на разнообразие вариантов, все 6SN7, выпущенные в странах Запада в 1940-е, 1950-е и 1960-е годы, чрезвычайно близки друг к другу по электрическим параметрам[4]. Предельно допустимые токи, напряжения и мощности различны, субъективно звучание разных ламп может восприниматься по-разному, но в номинальном режиме усилителя низких частот характеристики всех вариантов идентичны[3][4]. Объективно измеримый (и никогда не публиковавшийся в справочных листках) показатель — коэффициент второй гармоники — укладывается в весьма узкий интервал[4]. 6SN7 производства 1990-х годов отличаются систематически бо́льшими искажениями, а миниатюрные лампы послевоенного поколения — как бо́льшими искажениями, так и бо́льшим разбросом параметров[3][4].

Нелинейные искажения

Анодно-сеточные характеристики 6SN7GTA[34] (чёрные сплошные кривые) и 12AU7/ECC82[35] (красные пунктирные). Бо́льшая кривизна характеристики 12AU7 — признак бо́льших нелинейных искажений.

В составе нелинейных искажений однотактного усилителя на триоде абсолютно доминирует вторая гармоника. В каскадах на лампах семейства 6SN7 уровень третьей и четвёртой гармоник на 30…40 дБ, или в 30…100 раз меньше уровня второй гармоники, пятая гармоника пренебрежимо мала, а шестую и высшие гармоники невозможно надёжно измерить[36]. По данным Джонса, при среднеквадратическом напряжении сигнала на аноде +28 dBu (19,5 В) средневзвешенный по стандарту МККР/ARM коэффициент нелинейных искажений (КНИ) каскада на лампах семейства 6SN7 составляет от −50 дБ (0,32 %) для обычных ламп в прозрачных баллонах до −58 дБ (0,13 %) для военных CV1988 в чернёных (карбонизированных) баллонах[37]. Так как КНИ однотактного каскада прямо пропорционален уровню сигнала на аноде, значения КНИ для меньших выходных напряжений можно рассчитать простым делением. При напряжении сигнала на аноде 1 В КНИ примерно в 20 раз, или на 26 дБ, меньше КНИ, измеренного при 20 В, и так далее[38]:

  • КНИвзв = Ua • 0,016 % для обычных ламп, где Ua — среднеквадратическое напряжение сигнала на аноде, В, и
  • КНИвзв = Ua • 0,07 % для CV1988 в чернёных баллонах[37].

Эти значения, измеренные в высоколинейном мю-повторителе с током анода 7,5 мА и эффективной анодной нагрузкой 800 кОм, близки к пределу, теоретически достижимому в однотактном усилителе[39]. Дифференциальный каскад на тщательно подобранных триодах выигрывает у мю-повторителя в уровне второй гармоники, но проигрывает в уровне третьей[40]. В обычном каскаде на сопротивлениях КНИ существенно выше. Например, при оптимальном с точки зрения искажений токе 8 мА и сопротивлении нагрузке 22 кОм уровень второй гармоники такого каскада на 17 дБ, или в семь раз, хуже чем у мю-повторителя[40].

Все измеренные Джонсом миниатюрные лампы имели худшие КНИ, при бо́льшем удельном весе наиболее заметной на слух третьей гармоники[3]. Например, миниатюрная лампа 12AU7 — функциональный аналог 6SN7 с тем же номинальным μ=20 — генерировала в 4,5 раз больше второй гармоники и в 28 раз больше третьей гармоники[37]. Проводивший аналогичные измерения Эрик Барбур в целом подтверждает этот вывод: 6SN7 намного линейнее ламп послевоенной разработки[4]. «Парадокс» объясняется тем, что миниатюрные лампы 1950-х годов, за редким исключением, разрабатывались не для усиления звука, а для решения узких задач радиоприёма, телевидения, вычислительной техники и промышленной автоматики[41]. Конструкторы этих ламп решали проблемы долговечности, надёжности, удешевления производства, но не снижения искажений[41].

Зависимость μ от напряжения и тока анода для 6SN7GTB (General Electric, 1954[34]). Непостоянство μ — главный внутриламповый фактор нелинейных искажений.

Одиночные триоды 6J5GT в стеклянных баллонах, в том числе их советские копии 6С2С ранних лет выпуска, идентичны 6SN7, а триоды 6J5 в металлическом исполнении отличаются в 2—4 раза бо́льшими искажениями[42]. Все металлические лампы проигрывают своим стеклянным аналогам из-за бо́льшей загазованности, в особенности при разогреве баллона до высоких температур[43]. В металлическом баллоне в принципе невозможно создать столь же глубокий вакуум, как в стеклянном[43].

Превосходство британских ламп военных серий над гражданскими 6SN7 также имеет объективную причину. Главный, фундаментальный источник искажений усилителя на триоде — рост внутреннего сопротивления и снижение крутизны анодной характеристики лампы по мере снижения анодного тока[44]. Чем ниже сопротивление нагрузки, тем выше искажения этого рода, и наоборот: при высоком, порядка нескольких сотен кОм, сопротивлении нагрузки «вклад» этого фактора снижается[44]. На первое место выходит непостоянство коэффициента усиления напряжения (μ) из-за неоднородностей намотки сетки[44]. В лампах военных серий, выпускавшихся на новом оборудовании по жёстким техническим условиям, неоднородность намотки была сведена к минимуму, что и обусловило лучшие значения КНИ[45]. Обычные, гражданские лампы британского производства имеют те же величины КНИ, что и лампы производства США, при незначительно — но систематически — бо́льших величинах μ[4]. Вероятно, именно небольшой разницей в громкости звучания и объясняется мнение о превосходстве всех «британцев» над «американцами»[4]. Чернение (карбонизация) стекла графитом уменьшает вторичную эмиссию электронов с внутренней поверхности баллона — это снижает возмущения внутриламповых электростатических полей, что также способствует уменьшению искажений[46]. В 1940-е годы чернёные баллоны были нормой, но в начале 1950-х годов производители отказались от них — вероятно, в попытке снизить себестоимость массовой продукции[11].

Номинальное напряжение накала и коэффициент нелинейных искажений между собой не связаны: различия между 6SN7GT и 12SN7GT и между 7N7 и 14N7 лежат в пределах статистической погрешности[13]. Однако при питании накала переменным током лампы с бо́льшим напряжением и, соответственно, меньшим током накала предпочтительнее из-за меньшего уровня помех (сетевого фона)[3].

Примечания

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Barbour, 1999, p. 4.
  2. 1 2 Tung-Sol Electronic Tubes Technical Data. — Newark, New Jersey, USA, 1948. — P. 1584—1586.
  3. 1 2 3 4 5 6 7 Джонс, 2007, с. 310.
  4. 1 2 3 4 5 6 7 8 9 10 Barbour, 1999, p. 8.
  5. 1 2 3 Barbour, 1999, p. 3.
  6. Cоветский аналог — 6Н7С
  7. Джонс, 2007, с. 284, 310.
  8. 1 2 Джонс, 2007, с. 752.
  9. 1 2 3 4 5 6 7 8 9 Barbour, 1999, p. 5.
  10. Джонс, 2007, с. 154.
  11. 1 2 3 Atwood, J. The 6SN7GT – the best general-purpose dual triode? Effectrode.com. Дата обращения: 24 декабря 2016. Архивировано 3 октября 2016 года.
  12. 1 2 Revised cross-index of vacuum tubes : [арх. 30 декабря 2016] // Bureau of Ships Radio and Sound Bulletin. — 1943. — No. 9. — P. 13-18.
  13. 1 2 Джонс, 2007, с. 309.
  14. Джонс, 2007, с. 308.
  15. Гурфинкель, Б. Б. Приёмно-усилительные лампы. — Л. : Госэнергоиздат, 1949. — С. 7, 97—100.
  16. Абрамов, Б. Приёмно-усилительные лампы. — М. : Госэнергоиздат, 1952. — С. 6.
  17. Barbour, E. Baby Blues Bottle: The 6V6 // Vacuum Tube Valley. — 1999. — № 10. — P. 3-8.
  18. 1 2 Jayaswal, B., Patton, P. Design for Trustworthy Software: Tools, Techniques, and Methodology of Developing Robust Software. — Pearson, 2006. — N-Version Programming for Reliability. — ISBN 9780132797351.
  19. 1 2 3 4 Barbour, E. Computing with Tubes: The Savage Art. 2. Inside ENIAC // Vacuum Tube Valley. — 1997. — № 8. — P. 20—21.
  20. 1 2 Booth, A.D. Computers in the University of London 1945-1962 // History of Computing in the Twentieth Century. — Elsevier, 2014. — P. 557—558. — ISBN 9781483296685.
  21. McCann, D. The last of the first. CSIRAC: Australia’s first computer. — The University of Melbourne, 2000. — P. 7, 8, 45. — ISBN 9780734051684.
  22. 1 2 3 4 Barbour, 1999, p. 6.
  23. 1 2 Дашевский Л. Н. Эксплуатация Малой Электронной Счетной Машины АН УССР : [арх. 30 декабря 2016] // Конференция «Пути развития советского математического машиностроения и приборостроения». Москва, 12—17 марта 1956 г. Тезисы докладов. — 1956.
  24. Брук, И. C и др. История создания отечественной ЭВМ первого поколения — М-1. ПАО «ИНЭУМ им. И.С. Брука». Дата обращения: 29 декабря 2016. Архивировано 31 декабря 2016 года.
  25. Бураков, В.М. Опыт эксплуатации цифровой вычислительной машины «Урал». — Советское радио, 1962. — С. 34, 136.
  26. 1 2 Зимин В. А. Надежность ламп в электронной вычислительной машине : [арх. 30 декабря 2016] // Конференция «Пути развития советского математического машиностроения и приборостроения». Москва, 12—17 марта 1956 г. Тезисы докладов. — 1956.
  27. Джонс, 2007, с. 545—547.
  28. Williamson, D.T.N. High Quality Amplifier: The New Version : [арх. 20 октября 2016] // Wireless World. — 1949. — № August. — P. 282—287.
  29. Barbour, E. 12AX7: Twin Triodes Forever // Vacuum Tube Valley. — 2000. — № 14. — P. 4—8.
  30. Shuguang Vacuum Tube Manufacturing Facility. Enjoy the Music. Дата обращения: 30 декабря 2016. Архивировано 31 декабря 2016 года.
  31. Гурлев, С. А. Справочник по электронным приборам. — Киев : Гостехиздат УССР, 1962. — С. 212-216.
  32. CV1988. Specification MOSA/CV1988. UK Ministry of Supply (1954). Дата обращения: 26 декабря 2016. Архивировано 30 апреля 2016 года.
  33. 12SX7-GT Twin-triode amplifier for use with 12-cell storage battery supply. Tentative Data : [арх. 31 декабря 2016]. — Harrison, New Jersey, USA : RCA, 1946.
  34. 1 2 3 6SN7-GTB — 6SN7-GTA — 12SN7-GTA // General Electric Tube Data Book : [арх. 8 июля 2017]. — 1954. — 6SN7GTB-6SN7-GTA 12SN7-GTA. — P. ET-Т889 5.
  35. Brimar receiving tube 12AU7 ECC82 : [арх. 30 декабря 2016]. — Footrscray, Kent, England : Standard Telephone and Cables Limited, 1952. — № Application Report VAD/513.4. — P. 8.
  36. Джонс, 2007, с. 307.
  37. 1 2 3 Джонс, 2007, с. 311.
  38. Джонс, 2007, с. 306.
  39. Джонс, 2007, с. 291, 306, 728.
  40. 1 2 Джонс, 2007, с. 291.
  41. 1 2 Джонс, 2007, с. 302—303.
  42. Джонс, 2007, с. 307—308, 728.
  43. 1 2 Муромцев, В. В. Усилительные устройства и электроакустика. — М. : Госкиноиздат, 1951. — С. 143.
  44. 1 2 3 Джонс, 2007, с. 141.
  45. Джонс, 2007, с. 142.
  46. Джонс, 2007, с. 303.

Источники

  • Джонс, М. Ламповые усилители = Valve Amplifiers, 3rd edition / пер. с англ.; под общ. научной ред. к.т.н. доц. Иванюшкина Р. Ю.. — М. : ДМК-пресс, 2007. — 760 с. — ISBN 5970600202.
  • Barbour, E. 6SN7: The Driver of Choice // Vacuum Tube Valley. — 1999. — № 11. — P. 3-8.
Эта страница в последний раз была отредактирована 17 января 2024 в 10:56.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).