Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

2-3 дерево — структура данных, являющаяся B-деревом, каждый узел (страница) которого имеет либо два потомка и одно поле, либо три потомка и два поля. Листовые вершины являются исключением — у них нет детей, но есть одно или два поля. 2-3 деревья сбалансированы, то есть все листовые вершины находятся на одной высоте от корня дерева.


Свойства

  • Все нелистовые вершины содержат одно поле и 2 поддерева или 2 поля и 3 поддерева.
  • Все листовые вершины находятся на одном уровне (на нижнем уровне) и содержат 1 или 2 поля.
  • Все данные отсортированы (по принципу двоичного дерева поиска).
  • Поле в 2-вершине, как и в двоичном дереве поиска, делит пространство возможных значений на два диапазона: и
  • Поля в 3-вершине делят пространство возможных значений на три диапазона: , и

Нелистовые вершины

Нелистовые вершины содержат одно или два поля, указывающие на диапазон значений в их поддеревьях. Значение первого поля строго больше наибольшего значения в левом поддереве и меньше или равно наименьшему значению в правом поддереве (или в центральном поддереве, если это 3-вершина); аналогично, значение второго поля (если оно есть) строго больше наибольшего значения в центральном поддереве и меньше или равно, чем наименьшее значение в правом поддереве. Эти нелистовые вершины используются для направления функции поиска к нужному поддереву и, в конечном итоге, к нужному листу.

Например, для иллюстрации выше справедливы следующие неравенства:

  • для 2-вершины:
  • для 3-вершины:

См. также

Ссылки

Эта страница в последний раз была отредактирована 26 марта 2021 в 11:12.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).