Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

  • «Существуют две формы: ноль и нуль. В терминологическом значении (особенно в косвенных падежах) обычно используется вторая, например: равняется нулю, температура держится на нуле»[1].
  • «…производное прилагательное обычно образуется от формы нуль, например: нулевой меридиан, нулевая отметка»[1].

0 (ноль, нуль от лат. nullus — никакой[2]) — целое число, которое при сложении с любым числом или вычитании из него не меняет последнее[3], то есть даёт результат, равный этому последнему; умножение любого числа на ноль даёт ноль[4].

Большой толковый словарь Кузнецова (2009)[5] приводит обе формы слова: ноль, нуль — как равнозначные, хотя имеется некоторое различие в употреблении. В частности, форма нуль чаще используется в терминологии, особенно в косвенных падежах, она же берётся как основа для образования прилагательного нулевой — соответственно, форма ноль чаще употребляется в именительном падеже (см. врезку).

Нуль играет исключительно важную роль в математике и физике[6].

Ноль в математике

Основные свойства нуля

.
  • При вычитании нуля из любого числа получается то же число[7]:
.
  • При делении нуля на любое ненулевое число получается ноль:
при

Деление на ноль

В самом деле, если обозначить , то по определению деления формально должно быть , в то время как выражение , при любом , равно нулю. Другими словами, для нуля не существует обратного элемента ни в каком поле.

Принадлежность к натуральным числам

Существуют два подхода к определению натуральных чисел — одни авторы причисляют ноль к натуральным числам[8], другие этого не делают. В российских школьных программах по математике не принято причислять ноль к натуральным числам, хотя это затрудняет некоторые формулировки (например, приходится различать деление с остатком и деление нацело). В качестве компромисса в источниках иногда рассматривают «расширенный натуральный ряд», включающий нуль[9].

Значения отдельных функций

  • Результат возведения любого числа (кроме нуля) в нулевую степень равен единице: .
Связано это с тем, что функция двух переменных в точке имеет неустранимый разрыв.
В самом деле, вдоль положительного направления оси где она равна единице, а вдоль положительного направления оси где она равна нулю. См. подробнее статью Ноль в нулевой степени.
  • Факториал нуля, по соглашению, принят равным единице: .

Обобщения (ноль в общей алгебре)

Аналог нуля может существовать в любом множестве, на котором определена операция сложения; в общей алгебре такой элемент иногда называется нейтральным элементом, иногда — аддитивным нулём, чаще всего — нулём относительно сложения. Примеры такого элемента — нулевой вектор и нулевая матрица. (Если же на множестве определена операция умножения, в качестве аналога нуля можно рассматривать мультипликативную единицу, или единицу относительно умножения — при наличии таковой.)

Алгебраические структуры, снабженные и сложением, и умножением, также могут содержать аналог нуля. Нулевой элемент содержит любое кольцо и его частные случаи — тело и поле. Например, квадратная нулевая матрица размера является нулевым элементом кольца квадратных матриц . Кольцо многочленов также имеет нулевой элемент — многочлен с нулевыми коэффициентами, или нулевой многочлен, .

Ноль в математическом анализе

  • При вычислении предела отношения , где и , возникает ситуация, когда непосредственная подстановка даёт выражение , значение которого не определено. В процессе раскрытия неопределённостей возможны семь таких ситуаций, и в четырёх из них формально присутствует ноль: , , , .
  • Также возможна вполне определённая ситуация, когда рассматривается односторонний (правый или левый) предел бесконечно малой величины:
  • Правый предел: _ или _ .
  • Левый предел: _ или _ .

Ноль в геометрии

  • Точку можно рассматривать как нульмерный объект.
  • Точка плоскости с одной нулевой координатой лежит на соответствующей координатной оси. Обе нулевые координаты задают точку, именуемую началом координат.
  • Точка трёхмерного пространства с одной нулевой координатой лежит на соответствующей координатной плоскости. Точка трёхмерного пространства вновь именуется началом координат, если все её координаты нулевые.
  • Аналогичные утверждения верны для пространства любой размерности.
  • На окружности расположения 0° и 360° совпадают.

История использования нуля

История использования цифры 0

Цифра 0 появилась одновременно с появлением позиционной (поместной) нумерации - десятичной в Индии и шестидесятиричной в Вавилоне.

Впервые цифра "нуль" появилась в Индии, где именовалась санскритским словом «сунья» («пустота»; «отсутствие»), и широко использовался в поэзии и священных текстах. Исследования показали, что манускрипт Бакхшали содержит, вероятно, самое древнее упоминание ноля[13][14]. Без нуля была бы невозможна изобретённая в Индии десятичная позиционная запись чисел. Первый код нуля обнаружен в индийской записи от 876 г. н. э., он имеет вид привычного нам кружочка.

Вавилонские математики использовали особый клинописный значок для шестидесятеричного нуля, начиная примерно с 300 г. до н. э., а их учителя-шумеры, вероятно, сделали это ещё раньше. Однако символ «двойной клин» вавилонских мудрецов никогда не означал «число 0»[15].

Цифра 0 отсутствовала в римской, греческой и китайской системах обозначения чисел. Без этой цифры обходились, назначая некоторым символам значения крупных чисел. Например, число 100 в греческой системе счисления обозначалось буквой ϡ, в Римской - буквой C, в китайской - иероглифом 百.

От индийцев через арабов, называвших цифру 0 «сифр» (отсюда слова «цифра» и лат. zero, ноль), она попала в Западную Европу.[16]

История использования числа 0

Хотя в египетской системе счисления цифра 0 отсутствует, египетские математики уже со Среднего царства (начало II тысячелетия до н. э.) использовали для обозначения числа "нуль" иероглиф нфр («прекрасный»), также означавший начало отсчёта в схемах храмов, пирамид и гробниц[17].

Своеобразные коды нуля использовали ещё до нашей эры древние майя и их соседи в Центральной Америке (древние майя обозначали ноль стилизованным изображением ракушки).

Хотя в китайских записях чисел цифра "нуль" отсутствует, для обозначения числа "нуль" пользуются знаком 〇 — одним из иероглифов императрицы У Цзэтянь.

В Древней Греции число 0 известно не было. В астрономических таблицах Клавдия Птолемея пустые клетки обозначались символом ο (буква омикрон, от др.-греч. οὐδέν — ничего); не исключено, что это обозначение повлияло на появление цифры "нуль", однако большинство историков признаёт, что десятичный нуль изобрели индийские математики.

В Европе долгое время 0 считался условным символом и не признавался числом; даже в XVII веке Валлис писал: «Нуль не есть число». В арифметических трудах отрицательное число истолковывалось как долг, а ноль — как ситуация полного разорения. Полному уравниванию его в правах с другими числами особенно способствовали труды Леонарда Эйлера.

См. также

Примечания

  1. 1 2 Д. Э. Розенталь. Справочник по правописанию, произношению, литературному редактированию. Глава X. Правописание имен числительных. М.: ЧеРо, 1999.
  2. Энциклопедический словарь юного математика, 1985.
  3. Ноль — Толковый словарь Ожегова — Энциклопедии & Словари
  4. НУЛЬ // Большой Энциклопедический словарь. 2000.
  5. Большой толковый словарь русского языка. Гл. ред. С. А. Кузнецов. Первое издание: СПб.: Норинт, 1998.
  6. Самая важная цифра есть нуль. Это была гениальная идея — сделать нечто из ничего, дать этому нечто имя и изобрести для него символ. «Это вроде перечеканки Нирваны в динамомашину», — говорит Халстед.

    Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Физматлит, 1959. — С. 77.
  7. 1 2 Савин А. П. Энциклопедический словарь юного математика / сост. А. П. Савин. — М.: «Педагогика», 1989. — С. 219.
  8. Bunt, Lucas Nicolaas Hendrik. The historical roots of elementary mathematics / Lucas Nicolaas Hendrik Bunt, Phillip S. Jones, Jack D. Bedient. — Courier Dover Publications, 1976. — P. 254–255. — ISBN 0-486-13968-9., Extract of pages 254—255
  9. Потапов М. К., Александров В. В., Пасиченко П. И. Алгебра и анализ элементарных функций. — М.: Наука, 1981. — С. 9. — 560 с.
  10. Что такое степень числа // Школьная математика, интернет-ресурс.
  11. Почему число в степени 0 равно 1? // Науколандия, интернет-ресурс.
  12. Степенная функция // Большая советская энциклопедия. — М.: Советская энциклопедия 1969—1978.
  13. Суета вокруг нуля.
  14. Much ado about nothing: ancient Indian text contains earliest zero symbol (англ.). The Guardian (14 September 2017). Дата обращения 19 сентября 2017.
  15. Ламберто Гарсия дель Сид. Особые числа других культур → 116 // Замечательные числа. Ноль, 666 и другие бестии. — DeAgostini, 2014. — Т. 21. — С. 116. — 159 с. — (Мир математики). — ISBN 978-5-9774-0716-8.
  16. Ламберто Гарсия дель Сид. Особые числа других культур → 116 // Замечательные числа. Ноль, 666 и другие бестии. — DeAgostini, 2014. — Т. 21. — С. 115. — 159 с. — (Мир математики). — ISBN 978-5-9774-0716-8.
  17. Joseph, George Gheverghese. The Crest of the Peacock: Non-European Roots of Mathematics (Third Edition). — Princeton University Press, 2011. — P. 86. — ISBN 978-0-691-13526-7.

Литература

Ссылки

Эта страница в последний раз была отредактирована 29 июля 2019 в 00:49.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).