Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Эрстед, Ханс Кристиан

Из Википедии — свободной энциклопедии

Ханс Кристиан Эрстед
Hans Christian Ørsted
Ørsted.jpg
Дата рождения

14 августа 1777(1777-08-14)[1][…]

Место рождения

Рудкёбинг (Дания)

Дата смерти

9 марта 1851(1851-03-09)[1][…] (73 года)

Место смерти
Страна
Научная сфера

физика

Место работы
Альма-матер

Университет Копенгагена

Научный руководитель
Награды и премии

Медаль Копли (1820)

Подпись

Подпись

Commons-logo.svg Ханс Кристиан Эрстед на Викискладе

Ханс Кристиан Э́рстед  (дат. Hans Christian Ørsted,(14 августа 1777, Рудкёбинг, о. Лангеланн — 9 марта 1851, Копенгаген) — датский учёный, физик, исследователь явлений электромагнетизма.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 224 561
    1 169
    266 092
  • The Map of Physics
  • Электромагнитная индукция Жени Иванова 9_Б
  • Magnetism: Crash Course Physics #32

Субтитры

Физика — широкая научная область, охватывающая различные аспекты нашей жизни, начиная с галактик в глубинах космоса, и заканчивая субатомными частицами. И если вы не разбираетесь в физике, это сложно иногда увидеть, как все эти вещи связаны друг с другом. И это моя попытка показать всё в виде карты, карты физики. Надеюсь, вам понравится. Физика может быть разбита на 3 основные части: классическая физика, квантовая физика и теория относительности. Начнем с классической физики, и лучше всего начать с Исаака Ньютона. Его законы механики описывают, как движутся материальные объекты а его закон всемирного тяготения связывает движение планет в космосе с падением предметов на Земле в единую элегантную теорию. Также он ввёл математический анализ, крайне важный раздел математики, использовавшегося на протяжении веков для новых исследований в физике. Конечно же, математический анализ является частью математики, но физика и математика неразделимы. Математика — язык физики, Можете считать её фундаментом, на котором построен мир физики. Ньютон также был успешен и в области оптики, физике света, и о том, как он проходит через различные материалы. Она объясняет преломление в призмах и линзах, использующиеся для фокусировки света в телескопах, микроскопах и камерах. Телескопы позволили нам взглянуть в глубины космоса и наблюдать за массой различных объектов, развить астрофизику и космологию. Оптика тесно связана с теорией волн, описывающая как энергия проходит расстояние через возбуждение среды, как рябь на поверхности пруда или звук в воздухе. Свету не нужна среда для распространения, он может распространяться в вакууме космоса, но он подчиняется тем же принципам, что и все волны, а именно: отражение, преломление и дифракция. Это подводит нас к электромагнетизму: описанию магнитов, электричества, или, точнее, электрических и магнитных полей. Физик Джеймс Клерк Максвелл открыл, что они проявления одной и той же сущности. И вывел изумительно элегантные законы электромагнетизма и теоретизировал, что свет — электромагнитная волна. Электромагнетизм также объясняет все электрические явления. Возвращаясь немного назад, классическая механика связана с законами Ньютона и охватывает свойства и движение твердых тел, как они движутся под воздействием сил, и что происходит, когда они сцеплены друг с другом, как в шестернях, зданиях или мостах. Гидродинамика описывает движение жидкостей и газов. Используя гидродинамику можно вычислить подъемную силу крыла самолета или насколько аэродинамична ваша машина. Гидродинамика довольно трудная, в основном, из-за того, движения таких мелких объектов, как молекулы, усложняется очень быстро. Что подводит нас к теории хаоса. Теория хаоса — описание больших сложных систем и того, как малые изменения в начальных условиях могут привести к совершенно различным последствиям. Термодинамика — описание энергетических процессов, как энергия перетекает из одного состояния в другое. Она включает в себя энтропию, мера порядка и беспорядка, и, в принципе, рассказывает, насколько полезны различные типы энергии. Энергия — фундаментальное понятие в физике, и хотя я и написал "энергия" здесь, надо было написать это везде на этой карте, поскольку у всего есть энергия. Итак, это вся классическая физика, картина Вселенной до 1900-х годов. Она говорила нам, что мы живем во Вселенной, в которой все работает как часы, если бы вы могли измерить всё с необходимой точностью, будущее было бы предопределено. Однако, не всё было решено, было несколько пробелов в экспериментах, которые намекали на что-то ещё. Движение Меркурия немного быстрое, и странные вещи случались в малых масштабах с электронами и светом. Они не имели объяснения. Физики того времени думали, что они разрешат и объяснят их довольно скоро, но вместо этого вскрыли огромные новые области теории относительности и квантовой механики и перевернули наше представление о Вселенной с ног на голову. Альберт Эйнштейн — гений, развивший теории специальной и общей относительности. Специальная теория относительности предсказывает, что скорость света постоянна для всех наблюдателей, что означает, если вы двигаетесь очень быстро, странные вещи начинают происходить вокруг, например замедляется ход времени. Также она заявляет, что энергия и материя — две стороны одной медали, знаменитая формула E=mc2. Общая теория относительности говорит, пространство и время — части одной ткани реальности, пространства-времени, а гравитация — результат искривления пространства-времени материальными телами, заставляющий остальные тела притягиваться к ним. В то время как теория относительности описывала "очень большие" явления, другие физики были заняты описанием "очень маленьких", в мире квантовой физики. Атомная теория исследовала природу атома и давала всё более детальное описание атому. Начиная с крохотной сферы, к электронам движущиеся по орбитам, к энергетическим уровням, и, наконец, электроны — волноподобные распределения заряда. Физика конденсированного состояния описывает квантовую физику многочисленных атомов в твёрдых телах и жидкостях, многие замечательные технологии появились отсюда, как компьютеры, лазеры и квантовая информатика. Ядерная физика описывает поведение атомного ядра, радиацию, распад ядер, расщепление атомов, используемое на атомных электростанциях, слияние ядер, происходящее на Солнце, и, надеюсь, в скором будет использоваться здесь, на Земле. Физика элементарных частиц проникает еще глубже в исследование субатомных частиц, из которых всё и сделано и описывается в Стандартной модели элементарных частиц. Квантовая теория поля собирает в себе всю квантовую физику, соединяет её со специальной теорией относительности, и это лучшее описание Вселенной, которое у нас есть. К сожалению, квантовая теория поля не включает в себя гравитацию, и физики не знают, как соединить квантовую теорию с общей теорией относительности. что приводит нас к пропасти незнания. Однажды, в будущем, мы надеемся закрыть пропасть и прийти к теории всего, называемой теорией квантовой гравитации. Многочисленные попытки сделать это, например: Теория струн, петлевая квантовая гравитация, есть и другие. Но квантовая гравитация не единственная вещь, которую мы видим, но не можем понять. Существуют также важные загадки темной энергии и темной материи, из которой, кажется, состоит 95% Вселенной. Вся наша физика описывает всего 5%, о существовании чего мы знаем, а все остальное на данный момент — загадка. И есть ещё множество других загадок, как Большой Взрыв, и, без сомнений, есть вещи, про которые мы даже не знаем, что не знаем. что приводит к облаку тумана, летающее над всей физикой — философии. Хотя многие физики посмеиваются над философией, это серьезные философские вопросы, мотивирующие многих, например: "Какова фундаментальная природа реальности?" "Почему же Вселенная существует?" "Есть ли у нас свобода, если мы сделаны из физики?" "Откуда мы знаем, что то как мы занимаемся физикой и другими науками приводит нас к фундаментальной правде Вселенной?" и, просто, "Почему физика такая, какая она есть?" Это всё серьезные вопросы, на которые, возможно, мы никогда не ответим. Но нет причин сдаваться, в конце концов, физики не трусы. И это была карта физики. Это конец, спасибо за просмотр видео, надеюсь, вам понравилось. Я всё ещё работаю над форматом канала, пробую разные вещи, и мне нравится этот анимационный стиль роликов, так что дайте знать в комментариях, нравится ли вам такое, и хотите ли больше, какие темы мне охватить, я совершенно открыт для идей, у меня есть много видео, которые скоро выйдут, так что следите за обновлениями. До свидания. Увидимся!

Содержание

Ранние годы

Родился 14 августа 1777 г. в маленьком городке Рудкёбинге, расположенном на датском острове Лангеланн. Его отец был аптекарем, денег в семье не было. Начальное образование братья Ханс Кристиан и Андерс получали где придётся: городской парикмахер учил их немецкому; его жена — датскому; пастор маленькой церкви научил их правилам грамматики, познакомил с историей и литературой; землемер научил сложению и вычитанию, а приезжий студент впервые рассказал им о свойствах минералов.

С 12 лет Ханс помогает своему отцу в аптеке. Здесь он заинтересовывается естественными науками и решает поступать в университет.

Учеба в Копенгагенском университете

Университет в столице Дании Копенгагене был основан ещё в 1478 г., но его общеобразовательный уровень был ещё весьма низким. Достаточно сказать, что с начала XVIII века кафедра физики в нём была ликвидирована с целью усилить курс богословия.

В 1794 г. (17 лет) Эрстед в качестве абитуриента выезжает в Копенгаген и целый год готовится к экзаменам, которые затем успешно выдерживает. Его брат последовал за ним в Копенгаген и изучал там юриспруденцию. Во время учёбы Эрстед занимается практически всеми возможными дисциплинами. За эссе «Границы поэзии и прозы» ему была присуждена Золотая медаль университета.

Он предпочитал разносторонность профессионализму. Следующая его работа, также высоко оценённая, была посвящена свойствам щелочей, а блестяще защищённая диссертация, за которую он в 1798 году (едва закончив обучение) получил степень доктора философии, была посвящена медицине. По другой версии, степень доктора философии он (без защиты) получил за свой первый опубликованный труд «Метафизические основы естествознания Канта».

По окончании 3-летнего обучения в университете Эрстед получает звание фармацевта высшей ступени. Физику и химию, фундаментальные предметы для естествоиспытателя науки, преподавал в университете по совместительству профессор медицины.

Выпускник-фармацевт устраивается временным управляющим одной из столичных аптек, но желание заниматься преподаванием приводит его к должности адъюнкта (младшая ученая должность в академиях и в вузах; помощник академика или профессора.) при университете. Ему поручается чтение двух лекций в неделю без оплаты труда. Следовательно, он вынужден был продолжать работать в аптеке. Эта работа хоть и отвлекала от науки, но позволяла использовать оборудование аптеки в качестве исследовательской лаборатории.

Три года преподавания в университете не проходят даром. Старательный адъюнкт был замечен начальством и отправлен в заграничную командировку для повышения научной квалификации. Сначала Германия, где произошла встреча командированного учёного с человеком, талант и ум которого оказал глубокое влияние на его научные интересы. Речь идёт о «гениальном фантазёре» и сумасброде, неординарном физике и химике Иоганне Вильгельме Риттере, принципиальном стороннике натурфилософии Шеллинга, идеи которой заключались в том, что будто бы все силы в природе возникают из одних и тех же источников. Эти положения и заинтересовали Эрстеда. Вот что он писал: «Моё твёрдое убеждение, что великое фундаментальное единство пронизывает природу. После того как мы убедились в этом, вдвойне необходимо обратить наше внимание на мир разнообразия, где эта истина найдёт своё единственное подтверждение. Если мы не сделаем этого, единство само по себе становится бесплодным и пустым рассуждением, ведущим к неправильным взглядам».

Затем Париж, где он слушает лекции учёных первой величины — физика Шарля, химика Бертолле, естествоиспытателя Кювье. Большое впечатление на молодого учёного производят студенческие лаборатории Парижской политехнической школы — ведь тогда в Дании таких не было. И вот его вывод: «Сухие лекции без опытов, какие читают в Берлине, не нравятся мне. Все успехи науки должны начинаться с экспериментов».

В 1804 г. Эрстед возвращается в Данию. Но с работой в университете у него не все ладилось. Он не мог рассчитывать на государственную оплачиваемую должность. Однако после того как Эрстеду было поручено ведать коллекцией физических и химических приборов, принадлежащих королю он решается читать частные лекции по физике и химии.

«Мои лекции по химии, — писал начинающий лектор, — привлекают столько слушателей, что не все могут поместиться в аудитории». Именно этими лекциями Эрстед доказал администрации университета своё право на оплачиваемую штатную должность. В 1806 г. он становится профессором физики, в функции которого входила обязанность экзаменовать кандидатов по философии, а также преподавать физику и химию студентам-медикам и фармацевтам. «Отныне, — писал уже штатный профессор, — я получил привилегию основать физическую школу в Дании, для которой я надеюсь найти среди молодых студентов много талантливых людей». После этого назначения физика была признана полноправной дисциплиной в Копенгагенском университете. И через сто лет один из воспитанников этого университета Нильс Бор (18851962) станет одним из создателей современной квантовой физики.

В 1812 Эрстед снова выезжает за границу — в Берлин и Париж. И там он пишет работу «Исследование идентичности электрических и химических сил». Эта работа свидетельствует о том, что автор продолжает руководствоваться своей философской концепцией. С 1815 г. Эрстед — непременный секретарь Датского королевского общества.

История открытия

Hans Christian Ørsted, Der Geist in der Natur, 1854

Главное открытие Эрстеда — впервые экспериментально установлена связь между электрическими и магнитными явлениями. История этого открытия, совершенного зимой 18191820 учебного года (в одних источниках — 15 февраля, в других — ещё в декабре) включает в себя два варианта событий:

Эрстед на лекции в университете демонстрировал нагрев проволоки электричеством от вольтова столба, для чего составил электрическую, или, как тогда говорили, гальваническую цепь. На демонстрационном столе находился морской компас, поверх стеклянной крышки которого проходил один из проводов. Вдруг кто-то из студентов (здесь показания свидетелей расходятся — говорят, это был аспирант, а то и вовсе университетский швейцар) случайно заметил, что, когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Однако существует мнение, что Эрстед заметил отклонение стрелки сам.

В пользу стороннего наблюдателя говорит то, что, во-первых, сам Эрстед был занят манипуляциями скручивания проводов, к тому же вряд ли бы он, много раз проводивший такой опыт, стал живо интересоваться его ходом.

Однако предыдущие исследования Эрстеда и его увлечённость концепцией Шеллинга говорят об обратном. В некоторых источниках даже указывается, что Эрстед якобы всюду носил с собой магнит, чтобы непрерывно думать о связи магнетизма и электричества. Возможно, это вымысел, призванный упрочить позицию Эрстеда как первооткрывателя. В самом деле, если был так озабочен проблемой, почему не попытался раньше целенаправленно поставить опыт с электрической цепью и компасом? Ведь компас — одно из наиболее очевидных практических использований магнита. Тем не менее, нельзя отрицать, что над проблемой связи электричества и магнетизма он задумывался, как впрочем, и над проблемами связи других явлений, между которыми никакой связи не было (напомним, он был приверженцем концепции Шеллинга).

Для начала Эрстед повторил условия своего лекционного опыта, а затем стал их менять. И обнаружил следующее: «Если расстояние от проволоки до стрелки не превосходит 3/4 дюйма, отклонение составляет 45°. Если расстояние увеличивать, то угол пропорционально уменьшается. Абсолютная величина отклонения изменяется в зависимости от мощности аппарата». (Используя данное сообщение, А. М. Ампер вскоре предложит на его принципе магнитоэлектрический гальванометр, роль которого в развитии электрической науки трудно переоценить.)

Дальше начались вообще чудеса. Экспериментатор решает проверить действие проводников из различных металлов на стрелку. Для этого берутся проволоки из платины, золота, серебра, латуни, свинца, железа. И о чудо! Металлы, которые никогда не обнаруживали магнитных свойств, приобретали их, когда через них протекал электрический ток.

Эрстед стал экранировать стрелку от провода стеклом, деревом, смолой, гончарной глиной, камнями, диском электрофора. Экранирование не состоялось. Стрелка упорно отклонялась. Отклонялась даже тогда, когда её поместили в сосуд с водой. Последовал вывод: «Такая передача действия сквозь различные вещества не наблюдалась у обычного электричества и электричества вольтаического».

Когда соединительную проволоку Эрстед ставил вертикально, то магнитная стрелка совсем не указывала на неё, а располагалась как бы по касательной к окружности с центром по оси проволоки. Исследователь предложил считать действие проволоки с током вихревым, так как именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра.

Публикации и признание

Уже в июне 1820 Эрстед печатает на латинском языке небольшую работу под заголовком: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку»[4]. В ней учёный пишет резюме: «Основной вывод из этих опытов состоит в том, что магнитная стрелка отклоняется от своего положения равновесия под действием вольтаического аппарата и что этот эффект проявляется, когда контур замкнут, и он не проявляется, когда контур разомкнут. Именно потому, что контур оставался разомкнутым, не увенчались успехом попытки такого же рода, сделанные несколько лет тому назад известными физиками».

В этой же работе он пытается выработать правило, с помощью которого можно было бы заранее определить направление магнитного действия сил, возникающих в проводнике при прохождении по нему электрического тока. Вот это правило: «Полюс, который видит отрицательное электричество входящим над собой, отклоняется к западу, а полюс, который видит его входящим под собой, отклоняется к востоку».

Опыты Эрстеда ставили науку в затруднительное положение. Из экспериментов следовало, что сила, действующая между магнитным полюсом и током в проводнике, направлена не по соединяющей их прямой, а по нормали к этой прямой, то есть перпендикулярно. Этот факт подвергал сомнению всю ньютонианскую систему построения мира. Это почувствовали переводчики, переводившие на французский, итальянский, немецкий и английский языки латинский текст датского учёного. Зачастую, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечаниях латинский оригинал.

После своего открытия Эрстед стал всемирно признанным учёным. Он был избран членом многих наиболее авторитетных научных обществ: Лондонского Королевского общества и Парижской Академии. В частности в 1830 г. его избрали почетным членом Петербургской академий наук. Англичане присудили ему Медаль Копли за научные достижения, а из Франции он получил премию в 3000 золотых франков, когда-то назначенную Наполеоном для авторов самых крупных открытий в области электричества. Он продолжил заниматься наукой — в 1822-23 независимо от Ж. Фурье открыл термоэлектрический эффект и создал первый термоэлемент. Изучал сжимаемость и упругость жидкостей и газов, изобрёл пьезометр (устройство, служащее для измерения изменения объёма веществ под воздействием гидростатического давления), пытался обнаружить электрические эффекты под действием звука. Занимался также молекулярной физикой, в частности, изучал отклонения от закона Бойля — Мариотта.

Эрстед обладал не только научным, но и педагогическим талантом, вёл просветительскую деятельность: в 1824 создал Общество по распространению естествознания, в 1829 стал директором организованной по его инициативе Политехнической школы в Копенгагене. Умер Эрстед в Копенгагене 9 марта 1851. Его хоронили как национального героя.

Труды в русском переводе

  • Эрстед Г. Х. Опыты, относящиеся к действию электрического конфликта на магнитную стрелку. // В книге: Ампер А. М. Электродинамика. М.: АН СССР, 1954. — 492 с.

Интересные факты

См. также

Литература

Примечания

Эта страница последний раз была отредактирована 22 декабря 2017 в 15:24.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).