Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Эрми́това (или самосопряжённая) ма́трица — квадратная матрица, элементы которой являются комплексными числами, и которая, будучи транспонирована, равна комплексно сопряжённой: . То есть для любого столбца и строки справедливо равенство

где - комплексно сопряжённое число к ,

или

где  — эрмитово сопряжение

 — оператор эрмитова сопряжения (обозначение в квантовой механике).

Например, матрица

является эрмитовой.

Соответственно, антиэрмитовой матрицей называют квадратную матрицу, элементы которой удовлетворяют равенству , или .

Эрмитова матрица получила своё название после того, как Шарль Эрмит в 1855 году показал, что матрицы этой формы, также как и симметричные матрицы, имеют вещественные собственные значения.

Основные свойства

  • Вещественная эрмитова матрица (то есть та, все элементы которой — вещественные числа) является симметричной:
  • Аналогично, чисто мнимая эрмитова матрица (с элементами без вещественных составляющих) является кососимметричной.
  • Сумма двух эрмитовых матриц является эрмитовой.
  • Обратная к эрмитовой матрица также эрмитова, если существует.
  • Произведение двух эрмитовых матриц является эрмитовым тогда и только тогда, когда они коммутируют друг с другом, то есть если .
  • Собственные векторы эрмитовой матрицы, отвечающие различным собственным значениям, ортогональны. Но если одному собственному значению отвечают два собственных вектора, то они не обязательно ортогональны между собой, но ортогональны всем другим собственным векторам, отвечающим другим собственным значениям.

Дополнительные свойства

  • Сумма любой квадратной матрицы и её эрмитово сопряженной , является эрмитовой.
  • Разность любой квадратной матрицы и матрицы , эрмитово сопряжённой ей, является антиэрмитовой, то есть .
  • Любую квадратную матрицу C можно представить как сумму эрмитовой и антиэрмитовой матриц :
, причём эти слагаемые определяются однозначно: , . Их эрмитовость и антиэрмитовость следуют из двух предыдущих утверждений соответственно.

См. также

Ссылки

  • Hermitian Matrices / Mathpages (англ.)
  • 2.9 Эрмитовы матрицы (недоступная ссылка) / П.Ланкастер ТЕОРИЯ МАТРИЦ, Издательство" Наукa", Главная редакция физико-математической литературы, 1973, стр 75-79
Эта страница в последний раз была отредактирована 23 мая 2022 в 09:59.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).