Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Эпиморфи́зм в категорииморфизм , такой что из всякого равенства следует (другими словами, на можно сокращать справа).

Эпиморфизмы представляют собой категорный аналог понятия сюръективной функции, но это не одно и то же. Двойственным к понятию эпиморфизм является понятие мономорфизма; эпиморфизм, являющийся одновременно и мономорфизмом, называется биморфизмом.

Примеры

Каждый морфизм в конкретной категории, которому соответствует сюръективная функция, является эпиморфизмом. Например, сюръективный гомоморфизм  групп или  графов. Во многих категориях обратное тоже верно. Например, это верно в категориях множеств, групп, абелевых групп, векторных пространств, правых модулей и топологических пространств. Однако, например, в категории колец вложение  — несюръективный эпиморфизм (и, кроме того, биморфизм, не являющийся изоморфизмом).

Свойства

Любой морфизм, имеющий обратный справа, является эпиморфизмом. Действительно, если существует морфизм , такой что , то легко проверить, что  — эпиморфизм, домножив равенство на справа. Композиция двух эпиморфизмов — снова эпиморфизм. Если композиция двух морфизмов — эпиморфизм, то должен быть эпиморфизмом.

Как и многие концепции в теории категорий, эпиморфность сохраняется при эквивалентности категорий, является эпиморфизмом в одной категории тогда и только тогда, когда он является эпиморфизмом в другой.

Определение эпиморфизма можно переформулировать таким способом:  — эпиморфизм тогда и только тогда, когда индуцированное отображение:

инъективно для всех .

Литература

  • Маклейн С. Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — 352 с. — ISBN 5-9221-0400-4.
  • Bergman, George M. (1998), An Invitation to General Algebra and Universal Constructions, Harry Helson Publisher, Berkeley. ISBN 0-9655211-4-1.
Эта страница в последний раз была отредактирована 15 мая 2022 в 21:51.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).