Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Электронно-лучевая сварка

Из Википедии — свободной энциклопедии

Электронно-лучевая сварка — была разработана немецким физиком Карлом-Гайнцом Штайгервальдом из Штутгарта, Западная Германия, до 1958 года. Штайгервальд проводил эксперименты на своем электронном микроскопе, чтобы увеличить мощность прицела, и к своему удивлению обнаружил, что исследовавшийся образец исчез. Позже Штайгервальд определил, что, регулируя параметры мощности, образец плавится и снова затвердевает. Так родился аппарат электронной лучевой сварки. сварка, источником энергии при которой является кинетическая энергия электронов в электронном пучке, сформированном электронной пушкой.

Используется для сварки тугоплавких, высокоактивных металлов в космической, авиационной промышленности, приборостроении и др. Электронно-лучевая сварка используется и при необходимости получения высококачественных швов с глубоким проплавлением металла, для крупных металлоконструкций.

История

Первая установка для электронно-лучевой сварки была создана в МЭИ в 1958 году. В настоящее время выпускаются установки ЭЛУ-27, ЭЛСТУ-60, MEBW-60 и др.

Сущность

Электронно-лучевая сварка проводится электронным лучом в вакуумных камерах. Размеры камер зависят от размеров свариваемых деталей и составляют от 0.1 до нескольких сотен кубических метров.

Плавление металла при электронно-лучевой сварке и образование зоны проплавления обусловлено давлением потока электронов в электронно-лучевой пушке, выделением теплоты в объеме твердого металла, реактивным давлением испаряющегося металла, вторичных и тепловых электронов и излучением.

Сварка производится непрерывным или импульсным электронным лучом. Импульсные лучи с большой плотностью энергии и частотой импульсов 100—500 Гц используются при сварке легкоиспаряющихся металлов, таких как алюминий, магний. При этом повышается глубина проплавления металла. Использование импульсных лучей позволяет сваривать тонкие металлические листы.

В камере, формирующей электронный луч, откачивается воздух вплоть до давлений 1—10 Па. Это приводит к высокой защите расплавленного металла от газов воздуха.

Приемы сварки электронными лучами

Электронная пушка. 1 — катод, 2 — электрод, 3 — анод, 4 — электромагнитная линза, 5 — отклоняющая катушка, 6 — свариваемое изделие

В электронно-лучевой сварке применяют следующие технологические приемы для улучшения качества шва:

  • сварку наклонным лучом (отклонение на 5—7°) для уменьшения пор и несплошностей в металле;
  • сварку с присадкой для легирования металла шва;
  • сварку на дисперсной подкладке для улучшения выхода паров и газов из металла;
  • сварку в узкую разделку;
  • сварку двумя электронными пушками, при этом одна пушка производит проплавление металла, а вторая формирует корень канала;
  • предварительные проходы для очистки и обезгаживания кромок свариваемых металлов;
  • двустороннюю сварку одновременно или последовательно ;
  • развертку электронного луча: продольную, поперечную, Х-образную, круговую, по эллипсу, дуге и т. п.;
  • расщепление луча для одновременной сварки двух и более стыков;
  • модуляцию тока луча частотой 1—100 Гц. для управления теплоподачей в сварной шов.

Преимущества

Электронно-лучевая сварка имеет следующие преимущества:

  • Высокая концентрация теплоты позволяет за один проход сваривать металлы толщиной от 0,1 до 200 мм;
  • Для сварки требуется в 10-15 раз меньше энергии чем для дуговой сварки;
  • Отсутствует насыщение расплавленного металла газами.

Недостатки

  • Образование непроваров и полостей в корне шва;
  • Необходимость создания вакуума в рабочей камере.

Оборудование

Электронно-лучевые установки подразделяются на универсальные и специализированные, высоковакуумные (давление менее <10-1 Па), промежуточного вакуума (давление 10—10-1 Па), сварка в защитном газе (103—105 Па), на камерные (изделие внутри рабочей камеры) и с локальным вакуумированием (герметизация изделия в зоне сварки).

В состав установок для электронно-лучевой сварки входит электронная пушка, блоки питания. Электронно-лучевая пушка формирует пучок электронов с высокой плотностью энергии.

См. также

Примечания

Литература

  • Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. — М.: Машиностроение, 1978 (1-4 т).
  • Электронно-лучевая сварка/О. К. Назаренко, А. А. Кайдалов, С. Н. Ковбасенко и др./Под ред. Б. Е. Патона.— Киев: Наукова думка, 1987.— 256 с.
  • З. Шиллер, У. Гайзиг, З. Панцер. Электронно-лучевая технология. — М.: Энергия, 1980. — 528 с.
  • Попов В. Ф., Горин Ю. Н. Процессы и установки электронно-ионной технологии. — М.: Высш. шк., 1988. — 255 с. — ISBN 5-06-001480-0.
  • Виноградов М.И., Маишев Ю.П. Вакуумные процессы и оборудование ионно - и электронно-лучевой технологии. — М.: Машиностроение, 1989. — 56 с. — ISBN 5-217-00726-5.
Эта страница в последний раз была отредактирована 22 февраля 2024 в 09:02.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).