Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Эклиптическая система координат

Из Википедии — свободной энциклопедии

Связь эклиптической и второй экваториальной систем координат.
Связь эклиптической и второй экваториальной систем координат.

Эклиптическая система координат, или эклиптикальные координаты[1]:49 — это система небесных координат, в которой основной плоскостью является плоскость эклиптики, а полюсом — полюс эклиптики. Она применяется при наблюдениях за движением небесных тел Солнечной системы, плоскости орбит многих из которых, как известно, близки к плоскости эклиптики, а также при наблюдениях за видимым перемещением Солнца по небу за год[2]:30.

Описание

Одной координатой в этой системе является эклиптическая широта β, а другой — эклиптическая долгота λ.

Эклиптической широтой β светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до −90° к южному полюсу эклиптики.

Эклиптической долготой λ светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.

Различают два типа эклиптических координат. В первом из них за центральную точку берётся центр Земли[3]. Эклиптическая геоцентрическая система координат используется в небесной механике для расчета орбиты Луны. Во втором центральной точкой считается центр Солнца[3]. Эклиптическая гелиоцентрическая система координат используется для расчета орбит планет и других тел Солнечной системы обращающихся вокруг Солнца.

Вследствие предварения равноденствий и колебания угла наклона плоскости эклиптики к небесному экватору, на продолжительных промежутках времени эклиптическая система координат не является фиксированной, в таких случаях необходимы ссылки на эпоху, то есть время, когда были измерены координаты[3].

Экваториальные координаты полюсов эклиптики на эпоху 1 января 2000 г.:

Переход от второй экваториальной

Обозначим  — прямое восхождение,  — склонение,  — угол наклона эклиптики к небесному экватору. Тогда формулы перехода от второй экваториальной системы координат к эклиптической системе координат имеют следующий вид:

Если косинусов и синусов недостаточно, и нужны сами и , их выражают из этих трёх формул: угол  — из первой формулы, а угол  — из второй и третьей формул. Причём для получения нужно разобраться со знаками. Обозначим правую часть второй формулы , а правую часть третьей — , тогда

Остаётся рассмотреть значения и , которые обращают в нуль:

  • при и любом , и ;
  • при и любом , и ;
  • при и , и по формуле;
  • при и , и по формуле.

Переход ко второй экваториальной

Формулы перехода от эклиптической системы координат ко второй экваториальной системе координат имеют следующий вид. Обозначим  — прямое восхождение,  — склонение,  — угол наклона эклиптики к небесному экватору. Тогда

Текущая эклиптическая долгота Солнца

77.72032979551°

См. также

Примечания

  1. 1 2 Цесевич В.П. Что и как наблюдать на небе. — 6-е изд. — М.: Наука, 1984. — 304 с.
  2. Белова Н.А. Курс сферической астрономии. — М.: Недра, 1971. — 183 с.
  3. 1 2 3 Небесные координаты — статья из Большой советской энциклопедии
  4. Балк М.Б., Демин В.Г., Куницын А.Л. Сборник задач по небесной механике и космодинамике. — М.: Наука, 1972. — 336 с.

Литература

  • Цесевич В.П. Что и как наблюдать на небе. — 6-е изд. — М.: Наука, 1984. — 304 с.
  • Даффет-Смит П. Практическая астрономия с калькулятором. — М.: Мир, 1982. — 176 с.

Ссылки

Эта страница в последний раз была отредактирована 26 июня 2020 в 01:48.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).