Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

В комбинаторике числом Эйлера I рода из n по k, обозначаемым или , называется количество перестановок порядка n с k подъёмами, то есть таких перестановок , что существует ровно k индексов j, для которых .

Числа Эйлера I рода обладают также геометрической и вероятностной интерпретацией — число выражает:

Пример

Перестановки четвертого порядка, имеющие ровно два подъёма, должны удовлетворять одному из трёх неравенств: , или . Таких перестановок ровно 11:

1324, 1423, 2314, 2413, 3412, 1243, 1342, 2341, 2134, 3124, 4123.

Поэтому .

Свойства

Для заданного натурального числа существует единственная перестановка без подъёмов, то есть . Также существует единственная перестановка, которая имеет n-1 подъёмов, то есть . Таким образом,

для всех натуральных .

Зеркальным отражением перестановки с m подъёмами является перестановка с n-m-1 подъёмами. Таким образом,

Треугольник чисел Эйлера первого рода

Значение чисел Эйлера для малых значений n и k приведены в следующей таблице (последовательность A008292 в OEIS):

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1 0
2 1 1 0
3 1 4 1 0
4 1 11 11 1 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1 0
7 1 120 1191 2416 1191 120 1 0
8 1 247 4293 15619 15619 4293 247 1 0
9 1 502 14608 88234 156190 88234 14608 502 1 0

Легко понять, что значения на главной диагонали матрицы задаются формулой:

Треугольник Эйлера, как и треугольник Паскаля, симметричен слева и справа. Но в этом случае закон симметрии несколько отличен:

при n > 0.

То есть перестановка имеет n-1-k подъёмов тогда и только тогда, когда её «отражение» имеет k подъёмов.

Рекуррентная формула

Каждая перестановка из набора приводит к перестановкам из , если мы вставляем новый элемент n всеми возможными способами. Вставляя в -ю позицию, получаем перестановку . Количество подъёмов в равняется количеству подъёмов в , если или если ; и оно больше количества подъёмов в , если или если . Следовательно, в сумме имеет способов построения перестановок из , которые имеют подъёмов, плюс способов построения перестановок из , которые имеют подъёмов. Тогда искомая рекуррентная формула для целых имеет вид:

Положим также, что

(для целых ),

и при :

Явные формулы

Явная формула для чисел Эйлера I рода:

позволяет получить относительно простые выражения при малых значениях m:

Формулы суммирования

Из комбинаторного определения очевидно, что сумма чисел Эйлера I рода, расположенных в n-й строке, равна , так как она равна количеству всех перестановок порядка :

Знакопеременные суммы чисел Эйлера I рода при фиксированном значении n связаны с числами Бернулли :

Также справедливы следующие тождества, связывающие числа Эйлера I рода с числами Стирлинга II рода:

Производящая функция

Производящая функция чисел Эйлера I рода имеет вид:

Числа Эйлера I рода связаны также с производящей функцией последовательности -х степеней (полилогарифм целого отрицательного порядка):

Кроме того, Z-преобразование из

является генератором первых N строк треугольник чисел Эйлера, когда знаменатель -й элемента преобразования сокращается умножением на :

Тождество Ворпицкого

Тождество Ворпицкого выражает степенную функцию в виде суммы произведений чисел Эйлера I рода и обобщённых биномиальных коэффициентов:

В частности:

и т. д. Эти тождества легко доказываются по индукции.

Тождество Ворпицкого даёт ещё один способ вычисления суммы первых квадратов:

Литература

Эта страница в последний раз была отредактирована 23 февраля 2022 в 06:04.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).