Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Химическая ионизация

Из Википедии — свободной энциклопедии

Схема источника химической ионизации

Химическая ионизация (ХИ, англ. CI — Chemical Ionization) — один из методов ионизации анализируемой среды, применямых[1] в масс-спектрометрии[2][3]. Был впервые предложен Бёрнаби Мансоном и Франком Филдом[en] в 1966 году[4]. Теоретические основы химической ионизации являются разделом ионно-молекулярной химии[3]. Молекулы газа-реагента (обычно метан или аммиак)[5] подвергаются электронной ионизации с образованием ионов реагента, которые затем реагируют с молекулами анализируемого вещества с образованием ионов анализируемого вещества, пригодного для масс-спектрометрического анализа. Основанная на химической ионизации масс-спектрометрия находит применение при идентефикации и определении структурного и химического состава[6] а также полезна в биохимическом анализе[6]. Образцы анализируемого вещества должны быть в газообразной фазе или, если это жидкие или твёрдые вещества, образцы должны быть испарены перед введением в анализатор.

Принципы действия

Процесс химической ионизации сообщает меньше энергии анализируемой молекуле по сравнению и ионизацией электронным ударом, поэтому она приводит к не столь значительной фрагментации[3] и к более простым (менее детальным) масс-спетрам. В некоторых пределах степень фрагментации и тем самым детализация структурной информации может котролироваться выбором иона-реагента[3]. В дополнение к типичным пикам от фрагментированных ионов химическая ионизация обычно приводит к появлению пика от протонированного молекулярного иона масса которого на единицу превышает массу анализируемого вещества, что облегчает измерения молекулярной массы[7]. Таким образом, химическая ионизация полезна как альтернативный метод в случаях, когда электронная ионизация приводит к избыточной фрагментации и пик от молекулярного иона слабо выражен или отсутствует.

Техника и оборудование

Технически химическая ионизация очень похожа на электронную ионизацию. Давление в камере источника химической ионизации составляет примерно 1 Торр[8]. В камеру вводится электронный пучок с энергией 200—1000 эВ[8][9], достигая её центра[9]. В отличие от схемы электронной ионизации магнитная ловушка для электронного пучка может не использоваться, поскольку электроны не распространяются до конца камеры. Многие современные источники могут переключаться с электронной ионизации на химическую и обратно[10].

Механизм

Химическая ионизация происходит в разреженном газе, как правило метане, изобутане или аммиаке. Газ-реагент ионизируют пучком электронов при давлении примерно 1 mbar. Так как доля молекул газа значительно превышает долю молекул анализируемого вещества, электронный пучак производит преимущественную ионизация газа. Первичные ионы реагента вступают во вторичные ион-молекулярные реакции (смотри ниже) образуя более стабильные ионы-реагенты, которые в конечном счёте сталкиваются с молекулами ионизируемого вещества и ионизирует их. В отличие от столкновения с электронами высоких энергий, столкновение между ионами-реагентами и молекулами анализируемого вещества происходят при тепловых энергиях. Поэтому энергия, которая может пойти на фрагментацию анализируемой молекулы, ограничена экзотермическим эффектом молекулярно-ионной реакции[9], что и приводит к более низкой степени фрагментации.

Реакции в случае, когда газом-реагентом является метан:

Образование первичного иона-реагента

Образование вторичных ионов-реагентов

Ионы распадаются или, по большей части, реагируют с неионизированными молекулами газа (длина свободного пробега составляет примерно 0,004 см, так что наиболее вероятными являются межмолекулярные реакции):

Химическая ионизация анализируемой молекулы

В случае метана, ион CH5+ является сильной кислотой, которая передает протон анализируемым молекулам M, тем самым ионизуя их:

   (протонизация)

Так как при химической ионизации образуется множество побочных продуктов ионизации газа, возможно образование аддуктов, например:

  

Реакции при использовании аммиака в качестве газа-реагента

Таким образом, происходит мягкая ионизация анализируемых молекул, которая не вызывает значительной фрагментации, в отличие от электронной ионизации.

Выбор газа для химической ионизации определяется его сродством к протону в газовой фазе. Оно возрастает в ряду:

CH4 < С4H10 < NH3

Таким образом, если с помощью метана можно ионизовать практический любые летучий вещества, то с помощью аммиака — только сильные основания, например, амины. Таким образом достигается селективность.

Химическая ионизация позволяет получить спектр молекулярного иона анализируемого вещества, однако затрудняет изучение его структуры из-за отсутствия фрагментации.

Преимущества по сравнению с электронным ударом: — низкая фрагментация, интенсивный пик квазимолекулярного иона M+, который обычно отсутствует при электронном ударе. — Реакционный газ может быть использован в качестве газа-носителя в ГХ/МС — различные газовые реакции обеспечивают широкие возможности использования интуиции при структурном анализе.

Недостатки по сравнению с электронным ударом: — Обычно наблюдается только квазимолекулярный ион в виде [M-1]+, [M+1]+ — частая недостаточная фрагментация затрудняет структурный анализ — малое значение отношения m/z — часто на уровне шума.

Примечания

  1. Николаев Е. Н. Масс-спектрометрия // Большая российская энциклопедия. — 2011. — Т. 19. — С. 314—315.
  2. Biological applications of electron ionization and chemical ionization mass spectrometry (англ.) // Recent Prog. Horm. Res.. — 1972. — Vol. 28. — P. 591–626. — PMID 4569234.
  3. 1 2 3 4 Field, Frank H. (2002). "Chemical ionization mass spectrometry". Accounts of Chemical Research (англ.). 1 (2): 42—49. doi:10.1021/ar50002a002.
  4. Alex. G. Harrison. Chemical Ionization Mass Spectrometry, Second Edition. — CRC Press, 15 June 1992. — P. 1–. — ISBN 978-0-8493-4254-7.
  5. Mass Spectrometry Facility | CI (англ.). www.chm.bris.ac.uk. Дата обращения: 30 апреля 2022.
  6. 1 2 Positive and negative chemical ionization mass spectrometry using a Townsend discharge ion source (англ.) // Analytical Chemistry. — Vol. 47, iss. 11. — P. 1730–1734. — doi:10.1021/ac60361a011.
  7. de Hoffmann Edmond, Vincent Stroobant. Mass Spectrometry: Principles and Applications. — 2nd. — Toronto: John Wiley & Sons, Ltd., 2003. — С. 14. — ISBN 978-0-471-48566-7.
  8. 1 2 Dass, Chhabil. Fundamentals of contemporary mass spectrometry. — [Online-Ausg.]. — Hoboken, N.J. : Wiley-Interscience, 2007. — ISBN 9780470118498.
  9. 1 2 3 Methods of Ion Generation // Chemical Reviews. — 2000. — Т. 101, вып. 2. — С. 361–375. — doi:10.1021/cr990104w.
  10. Gross J. H. Mass Spectrometry. — Berlin, Heidelberg: Springer. — С. 331–354. — ISBN 978-3-642-07388-5.
Эта страница в последний раз была отредактирована 2 апреля 2024 в 18:16.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).