Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Хемотро́ника — дисциплина, занимающаяся фундаментальными и прикладными аспектами электрохимических процессов, протекающих на границе электрод — электролит под воздействием электрического тока, а также созданием устройств различного назначения в этой области[1].

Общие сведения

Хемотроника как научно-техническое направление возникла на стыке электрохимии и электроники. Её теоретической основой в значительной части стали работы академика АН СССР Александра Наумовича Фрумкина[2], исследовавшего принципы электрохимического преобразования в твёрдых и жидких электролитах[3]. Носителями заряда в этих процессах являются ионы, обладающие меньшей, порядка в 104—106 раз, подвижностью, чем носители в полупроводниках, что определяет область применения хемотроники.

Как техническая отрасль, хемотроника в начале своего пути разрабатывала общие теоретические и технологические принципы построения электрохимических преобразователей. При этом создавались приборы, использовавшие для переноски зарядов ионы растворов. Такими первыми разработками стали электрохимические выпрямители, интеграторы, усилители[4] .

Из-за низкой подвижности ионов приборы хемотроники по своей физической природе являются низкочастотными. Однако, по сравнению с обычными электронными приборами у них есть и преимущества. Таковыми, прежде всего, являются компактность и многофункциональность жидкостных элементов, где в небольшом объеме может происходить одновременно и с разной скоростью множество разнообразных физико-химических процессов. Кроме того, эти системы надёжны и обеспечивают возможность изменения своей внутренней структуры, то есть внутреннего управления[1].

Практическое использование

С использованием хемотроники создаются твёрдо- и жидкофазные приборы. В первых используют процесс образования твёрдой фазы на электродах или растворение материала электродов в ходе прохождения электрического тока[5], во вторых изменяют концентрацию раствора электролита в приэлектродных областях[6]. Перечень разработок широк — выпрямители, реле времени, интеграторы, нелинейные функциональные преобразователи, датчики ускорения, скорости, температуры, измерители вибрации, индикаторы и т. п[7]. Иногда подобные устройства выделяют в отдельную группу, называемую Хемотроны.

Диапазон рабочих частот хемотронных приборов: 10-7 — 10 Гц. В отличие от известных электромеханических, электромагнитных и электронных аналогов, они обладают высокой чувствительностью (до 10-3 В по напряжению и до 10-6 А по току), экономичностью (собственное потребление в пределах 10-8 — 10-3 Вт), пониженным уровнем собственных шумов, а также высокой надёжностью и сравнительной дешевизной[6].

Перспективы развития

Одним из дальнейших направлений развития является создание оптохемотронных приборов, в которых используется явление электрохемилюминесценции, то есть свечения, возникающего в области электродов при прохождении тока через растворы некоторых электролитов. Такие электролиты обычно состоят из активатора (люминесцирующего органического вещества), сопровождающего (фонового) электролита и растворителя. Электролит образует с материалами электродов обратимую окислительно-восстановительную систему. Подобные приборы используют в качестве излучателей и индикаторов, преобразователей неэлектрических величин в электрический сигнал. Например, используя эффект свечения возбуждённого переменным электрическим полем люминофора вблизи электрода специальной формы, можно создавать светящиеся цифры, буквы и пр[8].

См. также

Примечания

  1. 1 2 Хемотроника / Трейер В. В. // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  2. Волков В. А., Вонский Е. В., Кузнецова Г. И. Выдающиеся химики мира. — М.: ВШ, 1991. 656 с.
  3. Ya. M. Kolotyrkin, O. A. Petrii, and A. M. Skundin Academician A. N. Frumkin and Modern Advances in Electrochemistry // Russ. Journal Electrochem., 1995, v.31, p.709-712. Дата обращения: 4 сентября 2014. Архивировано 3 марта 2016 года.
  4. Воронков Г. Я., Гуревич М. А., Федорин В. А. Хемотронные устройства, — М., 1965.
  5. Юшина Л. Д. Твёрдотельная хемотроника (монография) // Успехи современного естествознания. — 2010. — № 2 — стр. 119—121. Дата обращения: 2 сентября 2014. Архивировано 3 сентября 2014 года.
  6. 1 2 Трейер В. В., Елизаров А. Б. Электрохимические интегрирующие и аналоговые запоминающие элементы, — М., Из-во Энергия, 1971. — 96 с.
  7. Боровков В., Графов Б., Добрынин Е., Луковцев П. Электрохимические преобразователи первичной информации, — М., 1969. — 196 с., 4500 экз.
  8. Стрижевский И. В., Дмитриев В. И., Финкельштейн Э. Б., Хемотроника — М., 1974.
Эта страница в последний раз была отредактирована 24 декабря 2023 в 07:33.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).