Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Функция Минковского
Функция Минковского

Функция «вопросительный знак» Минковского — построенная Германом Минковским монотонная сингулярная функция на отрезке , обладающая рядом замечательных свойств. Так, она взаимно-однозначно и с сохранением порядка переводит квадратичные иррациональности (то есть, числа вида где и рациональные) на отрезке в рациональные числа на том же отрезке, а рациональные числа — в двоично-рациональные. Она связана с рядами Фарея, цепными дробями, и дробно-линейными преобразованиями, а её график обладает рядом интересных симметрий.

Построение

Функция Минковского может быть задана несколькими эквивалентными способами: через ряды Фарея, через цепные дроби, и построением графика с помощью последовательных итераций.

Задание с помощью дерева Штерна — Броко

В концах отрезка функция Минковского задаётся как и . После этого для любых двух рациональных чисел и , для которых  — иными словами, для любых двух последовательных в каком-либо из рядов Фарея, — функция в их медианте определяется как среднее арифметическое значений в этих точках:

Так

и так далее.

Поскольку последовательности

в которых следующая получается из предыдущей дописыванием между каждыми соседними её элементами их медианты, перечисляют в объединении все рациональные числа отрезка (см. дерево Штерна — Броко), такая итеративная процедура задаёт функцию Минковского во всех рациональных точках . Более того, как несложно видеть, множеством её значений в этих точках оказываются в точности все двоично-рациональные числа  — иными словами, плотное в множество. Поэтому построенная функция по монотонности однозначно продолжается до непрерывной функции , и это и есть функция Минковского.

Задание с помощью цепной дроби

Функция Минковского, в определённом смысле, преобразует разложение в цепную дробь в представление в двоичной системе счисления. А именно, точку , раскладывающуюся в цепную дробь как , функция Минковского переводит в

Иными словами, точка

переходит в точку

Самоподобие

Пусть точка задаётся цепной дробью . Тогда увеличение на единицу, то есть, переход к задаётся отображением

а функция Минковского после такого преобразования делится (как это следует из её задания через цепную дробь аргумента) пополам:

С другой стороны, из симметрии относительно медиантной конструкции легко видеть, что

Сопрягая (1) с помощью (2), видим, что под действием отображения функция Минковского преобразуется как

Поэтому график функции Минковского переводится в себя каждым из преобразований

Более того, объединение их образов — это в точности весь исходный график, поскольку образ — это часть графика над отрезком , а образ  — график над отрезком .

Построение графика как фрактала

График функции Минковского может быть построен как предельное множество для системы итерируемых функций (англ.). А именно, отображения и , заданные формулами (3), сохраняют график функции Минковского и переводят единичный квадрат внутрь себя. Поэтому последовательность множеств , определённая рекурсивно соотношениями

есть убывающая по вложению последовательность множеств, причём график функции Минковского содержится в любом из них.

Несложно увидеть, что является объединением прямоугольников высоты , поэтому предельное множество

является графиком некоторой функции. Поскольку , то они совпадают. Поэтому график функции Минковского это предельное множество системы итерируемых функций

Свойства

  • Функция Минковского сингулярна, то есть в почти любой (по мере Лебега) точке её производная существует и равна нулю. Тем самым, мера на , функцией распределения которой является функция Минковского (продолженная нулём на отрицательные числа и единицей на большие единицы), сингулярна.
  • Функция Минковского взаимно однозначно переводит рациональные числа на отрезке в двоично-рациональные числа на том же отрезке.
  • Функция Минковского взаимно однозначно переводит квадратичные иррациональности на отрезке в рациональные числа на том же отрезке. Действительно, число является квадратичной иррациональностью тогда и только тогда, когда его разложение в цепную дробь, начиная с некоторого момента, периодично; с другой стороны, эта периодичность равносильна периодичности двоичной записи образа — иными словами, рациональности .
  • График функции Минковского переводится в себя отображениями и , заданными (3), а, следовательно, и их композициями.

Литература

  • Minkowski H. Verhandlungen des III. internationalen Mathematiker-Kongresses in Heidelberg. — Berlin, 1904.
  • Denjoy A. Sur une fonction réelle de Minkowski. — Journal de Mathématiques Pures et Appliquées. — 1938. — 17. — pp. 105—151.
  • Conley, R. M. (2003), A Survey of the Minkowski ?(x) Function, Masters thesis, West Virginia University , ссылка.
  • Conway, J. H. (2000), Contorted fractions, On Numbers and Games (2nd ed.), Wellesley, MA: A K Peters, с. 82—86 .
  • Кириллов А. А. Повесть о двух фракталах. — М.: МЦНМО, 2009.

См. также

Ссылки

Эта страница в последний раз была отредактирована 29 ноября 2021 в 13:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).