Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Функция Мёбиуса  — мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.

Определение

определена для всех натуральных чисел и принимает значения в зависимости от характера разложения числа на простые сомножители:

  • , если свободно от квадратов (то есть не делится на квадрат никакого простого числа) и разложение на простые множители состоит из чётного числа сомножителей;
  • , если свободно от квадратов и разложение на простые множители состоит из нечётного числа сомножителей;
  • , если не свободно от квадратов.

По определению также полагают .

Свойства и приложения

  • Функция Мёбиуса мультипликативна: для любых взаимно простых чисел и выполняется равенство .
  • Сумма значений функции Мёбиуса по всем делителям целого числа , не равного единице, равна нулю

Это, в частности, следует из того, что для всякого непустого конечного множества количество различных подмножеств, состоящих из нечётного числа элементов, равно количеству различных подмножеств, состоящих из чётного числа элементов, — факт, применяемый также в доказательстве формулы обращения Мёбиуса.

  • где n - положительное целое число.
  • где - это постоянная Эйлера.
  • Функция Мёбиуса тесно связана с дзета-функцией Римана. Так, через функцию Мёбиуса выражаются коэффициенты ряда Дирихле функции, мультипликативно обратной для дзета-функции Римана:
.

Ряд абсолютно сходится при , на прямой сходится условно, в области утверждение об условной сходимости ряда эквивалентно гипотезе Римана, а при ряд заведомо не сходится, даже условно.

При справедлива также формула:

  • где p — простое число.
  • Справедливы асимптотические соотношения:
при
,

из которых следует, что существует асимптотическая плотность распределения значений функции Мёбиуса. Линейная плотность множества её нулей равна , а плотность множества единиц (или минус единиц) . На этом факте основаны теоретико-вероятностные подходы к изучению функции Мёбиуса.

Обращение Мёбиуса

Первая формула обращения Мёбиуса

Для арифметических функций и ,

тогда и только тогда, когда

.

Вторая формула обращения Мёбиуса

Для вещественнозначных функций и , определённых при ,

тогда и только тогда, когда

.

Здесь сумма интерпретируется как .

Обобщённая функция Мёбиуса

Несмотря на кажущуюся неестественность определения функции Мёбиуса, его природа может стать ясна при рассмотрении класса функций с аналогичными свойствами обращаемости, вводимых на произвольных частично упорядоченных множествах.

Пусть задано некоторое частично упорядоченное множество с отношением сравнения . Будем считать, что .

Определение

Обобщённая функция Мёбиуса рекуррентно определяется соотношением.

Формула обращения

Пусть функции и принимают вещественные значения на множестве и выполнено условие .

Тогда

Связь с классической функцией Мёбиуса

Если взять в качестве множество натуральных чисел, приняв за отношение отношение , то получим , где - классическая функция Мёбиуса.

Это, в частности, означает, что , и далее определение классической функции Мёбиуса следует по индукции из определения обобщённой функции и тождества , так как суммирование по всем делителям числа, не делимого на полный квадрат, можно рассматривать как суммирование по булеану его простых множителей, перемножаемых в каждом элементе булеана.

См. также

Литература

  • Виноградов И.М. Основы теории чисел. — 9-е изд. — М., 1981.
  • Холл М. Комбинаторика = Combinatorial Theory. — М.: Мир, 1970. — 424 с.

Ссылки

Эта страница в последний раз была отредактирована 1 мая 2022 в 05:24.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).