Краткое описание
One of 16 Venn diagrams, representing 2-ary Boolean functions like set operations and logical connectives:
Operations and relations in set theory and logic
∅c |
A = A |
|||||||||||||
![]() |
![]() |
|||||||||||||
Ac Bc |
true A ↔ A |
A B |
A Bc |
AA |
A Bc |
|||||||||
![]() |
![]() |
![]() |
![]() |
|||||||||||
A Bc |
¬A ¬B A → ¬B |
A B |
A B A ← ¬B |
Ac B |
A B |
A¬B |
A = Bc |
A¬B |
A B |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||
Bc |
A ¬B A ← B |
A |
A B A ↔ ¬B |
Ac |
¬A B A → B |
B |
B = ∅ |
AB |
A = ∅c |
A¬B |
A = ∅ |
AB |
B = ∅c | |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||||
¬B |
A Bc |
A |
(A B)c |
¬A |
Ac B |
B |
Bfalse |
Atrue |
A = B |
Afalse |
Btrue | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||
A ¬B |
Ac Bc |
A B |
A B |
¬A B |
AB |
|||||||||
![]() |
![]() |
![]() |
![]() |
|||||||||||
¬A ¬B |
∅ |
A B |
A = Ac |
|||||||||||
![]() |
![]() |
|||||||||||||
false A ↔ ¬A |
A¬A |
|||||||||||||
These sets (statements) have complements (negations). They are in the opposite position within this matrix. |
These relations are statements, and have negations. They are shown in a separate matrix in the box below. |
more relations | ||||
---|---|---|---|---|
|
![]() |
Это произведение не защищается авторским правом, так как является тривиальным, не несёт художественной ценности, состоит только из общеизвестных элементов, не имеющих авторства. |