Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Условная дизъюнкция
Диаграмма Венна

Диаграмма Венна
Определение
Таблица истинности
Нормальные формы
Дизъюнктивная
Конъюнктивная
Полином Жегалкина
Принадлежность предполным классам
Сохраняет 0 Да
Сохраняет 1 Да
Монотонна Нет
Линейна Нет
Самодвойственна Нет

Условная дизъюнкция — тернарная (имеющая 3 операнда) логическая операция, введенная Алонзо Чёрчем[1]. Результат условной дизъюнкции аналогичен результату более общей тернарной условной операции (if o1 then o2 else o3), которая в том или ином виде используется в большинстве языков программирования как один из способов реализации ветвления в алгоритмах. Для операндов p, q, and r, которые определяют истинность суждения, значение условной дизъюнкции [p, q, r] определяется по формуле:

Другими словами, запись [p, q, r] эквивалентна записи: «Если q, то p, иначе r», которую можно переписать как «p или r, в зависимости от q или не q». Таким образом, для любых значений p, q и r значение [p, q, r] равно p, если q истинно, и равно r в противном случае.

В сочетании с константами, обозначающими каждое истинное значение, условная дизъюнкция является функционально полной для классической логики.[2] Её таблица истинности выглядит следующим образом:

Условная дизъюнкция
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Помимо условной дизъюнкции существуют и другие функционально полные тернарные операции.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 460
    6 187
    314
  • Таблицы истинности
  • Логические операции. Операторы сравнения, равенства, объединения, инверсия. C++ Урок #11.
  • Математический Анализ. Лекция 1. Введение.Тема 2. Высказывания и логические операции.

Субтитры

Примечания

  1. Church, Alonzo (англ.). Introduction to Mathematical Logic (неопр.). — Princeton University Press, 1956.
  2. Wesselkamper, T., «A sole sufficient operator», Notre Dame Journal of Formal Logic, Vol. XVI, No. 1 (1975), pp. 86-88.
Эта страница в последний раз была отредактирована 10 февраля 2020 в 14:52.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).