Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Уравнитель (математика)

Из Википедии — свободной энциклопедии

Уравнитель (также ядро разности) в теории категорий — обобщение понятия решения некоторого (алгебраического, дифференциального и т. п.) уравнения, то есть множества, на котором данные отображения совпадают.

Двойственное уравнителю понятие — коуравнитель.

Определение

Уравнитель морфизмов и  — это предел (если он существует) диаграммы , то есть такой морфизм , что и для любого морфизма существует единственный морфизм , для которого следующая диаграмма коммутативна:

Равносильно, уравнитель можно определить как коуниверсальный квадрат для морфизмов и .

Примеры

  • В категории множеств уравнитель двух отображений и  — это естественное вложение во множество множества, на котором и совпадают, то есть множества .
  • Аналогичным образом определяется уравнитель в категории топологических пространств.
  • В категории абелевых групп уравнитель гомоморфизмов совпадает с ядром их разности. Именно поэтому уравнитель в произвольной категории также иногда называют ядром разности, хотя в не предаддитивной категории, вообще говоря, разность морфизмов не определена.

Литература

  • Маклейн С. Глава 3. Универсальные конструкции и пределы // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — С. 68—94. — 352 с. — ISBN 5-9221-0400-4.


Эта страница в последний раз была отредактирована 21 декабря 2018 в 19:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).