Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как . В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.

  • Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".

Физический смысл уравнения Лапласа

— это уравнение Лапласа, или уравнение непрерывности, выражающее, что идеальный флюид, в котором нет завихрений, не разрушим. Это уравнение математически кодирует прописную истину: если флюид не сжимаем, из сколь угодно малого объема в момент времени должно выйти столько же жидкости, сколько ее содержится в нем.

Другие формы уравнения Лапласа

  • В сферических координатах уравнение имеет вид

Особые точки .

  • В полярных координатах уравнение имеет вид

Особая точка .

  • В цилиндрических координатах уравнение имеет вид

Особая точка .

См. также оператор набла в различных системах координат.

Применение уравнения Лапласа

Уравнение Лапласа возникает во многих физических задачах механики, теплопроводности, электростатики, гидравлики. Большое значение оператор Лапласа имеет в квантовой физике, в частности в уравнении Шрёдингера.

Решения уравнения Лапласа

Несмотря на то, что уравнение Лапласа является одним из самых простых в математической физике, его решение сопряжено с трудностями. Особенно трудным бывает численное решение из-за нерегулярности функций и наличия особенностей.

Гильберт выполнил строгое решение этого уравнения в частных производных.

Общее решение

Одномерное пространство

В одномерном вещественном пространстве уравнение Лапласа, сводящееся к равенству нулю второй производной, имеет общим решением линейную функцию:

где  — произвольные постоянные.

Двумерное пространство

Уравнению Лапласа на двумерном пространстве удовлетворяют аналитические функции. Аналитические функции рассматриваются в теории функций комплексного переменного, и класс решений уравнения Лапласа можно свести к функции комплексного переменного.

Уравнение Лапласа для двух независимых переменных формулируется в следующем виде

Аналитические функции

Если z = x + iy, и

то условия Коши — Римана являются необходимыми и достаточными для того, чтобы функция f(z) была аналитической:

И вещественная и мнимая части аналитических функций удовлетворяют уравнению Лапласа. Продифференцировав условия Коши — Римана, получаем

А это не что иное, как уравнение Лапласа для функции u. Точно также показывается, что функция v удовлетворяет уравнению Лапласа.

Функция Грина

Задача Дирихле

Задача Дирихле — краевые условия для уравнения Лапласа, когда искомая функция задана на ограниченной области и известны её значения на границе.

Задача Неймана

Задача Неймана — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной по нормали искомой функции на границе области — так называемые граничные условия второго рода.

Литература

Эта страница в последний раз была отредактирована 18 декабря 2023 в 13:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).