Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Анимация, иллюстрирующая истинную аномалию, эксцентрическую аномалию, среднюю аномалию и решение уравнения Кеплера (в правом верхнем углу), эксцентриситет — 0,6.
Анимация, иллюстрирующая истинную аномалию, эксцентрическую аномалию, среднюю аномалию и решение уравнения Кеплера (в правом верхнем углу), эксцентриситет — 0,6.

Уравне́ние Ке́плера описывает движение тела по эллиптической орбите в задаче двух тел и имеет вид:

где  — эксцентрическая аномалия,  — эксцентриситет орбиты, а  — средняя аномалия.

Впервые это уравнение было получено астрономом Иоганном Кеплером в 1619 году. Играет значительную роль в небесной механике.

Варианты уравнения Кеплера

Уравнение Кеплера в классической форме описывает движение только по эллиптическим орбитам, то есть при . Движение по гиперболическим орбитам подчиняется гиперболическому уравнению Кеплера, сходному по форме с классическим. Движение по прямой линии описывается радиальным уравнением Кеплера. Наконец, для описания движения по параболической орбите используют уравнение Баркера. При орбит не существует.

Задача, приводящая к уравнению Кеплера

Рассмотрим движение тела по орбите в поле другого тела. Найдем зависимость положения тела на орбите от времени. Из II закона Кеплера следует, что

.

Здесь  — расстояние от тела до гравитирующего центра,  — истинная аномалия — угол между направлениями на перицентр орбиты и на тело,  — произведение постоянной тяготения на массу гравитирующего тела,  — большая полуось орбиты. Отсюда можно получить зависимость времени движения по орбите от истинной аномалии:

.

Здесь  — время прохождения через перицентр.

Дальнейшее решение задачи зависит от типа орбиты, по которой движется тело.

Эллиптическая орбита

Уравнение эллипса в полярных координатах имеет вид

Тогда уравнение для времени приобретает вид

Для того, чтобы взять интеграл вводят следующую подстановку:

Величина E называется эксцентрической аномалией. Благодаря такой подстановке интеграл легко берется. Получается следующее уравнение:

Величина является средней угловой скоростью движения тела по орбите. В небесной механике для этой величины используется термин среднее движение. Произведение среднего движения на время называется средней аномалией M. Эта величина представляет собой угол, на которой повернулся бы радиус-вектор тела, если бы оно двигалось по круговой орбите с радиусом, равным большой полуоси орбиты тела.

Таким образом получаем уравнение Кеплера для эллиптического движения:

Гиперболическая орбита

Уравнение гиперболы в полярных координатах имеет тот же вид, что и уравнение эллипса. Значит, интеграл получается такой же по виду. Однако, использовать эксцентрическую аномалию в данном случае нельзя. Воспользуемся параметрическим представлением гиперболы: , . Тогда уравнение для гиперболы принимает вид

,

а связь между и

.

Благодаря такой подстановке интеграл приобретает ту же форму, что и в случае с эллиптической орбитой. После произведения преобразований получаем гиперболическое уравнение Кеплера:

Величина называется гиперболической эксцентрической аномалией. Поскольку , то последнее уравнение можно преобразовать следующим образом:

.

Отсюда видно, что .

Параболическая орбита

Уравнение параболы в полярных координатах имеет вид

где  — расстояние до перицентра. Второй закон Кеплера для случая движения по параболической траектории

Откуда получаем интеграл, определяющий время движения

Вводим универсальную тригонометрическую замену

и преобразуем интеграл

получаем окончательно

Последнее соотношение известно в небесной механике как уравнение Баркера.

Радиальная орбита

Радиальной называется орбита, представляющая собой прямую линию, проходящую через притягивающий центр. В этом случае вектор скорости направлен вдоль траектории и трансверсальная составляющая отсутствует[1], значит

Связь между положением тела на орбите и временем найдем из энергетических соображений

— интеграл энергии. Отсюда имеем дифференциальное уравнение

Разделяя переменные в этом уравнении, приходим к интегралу

способ вычисления которого определяется знаком константы . Выделяют три случая


  • прямолинейно-эллиптическая орбита

Соответствует случаю, когда полная механическая энергия тела отрицательна, и удалившись на некоторое максимальное расстояние от притягивающего центра, оно начнет двигаться в обратную сторону. Это аналогично движению по эллиптической орбите. Для вычисления интеграла введем замену

вычисляем интеграл

Полагая , запишем результат

приняв в качестве (недостижимого в реальности) условного перицентра , и направление начальной скорости от притягивающего центра, получим так называемое радиальное уравнение Кеплера, связывающее расстояние от притягивающего центра со временем движения

где .


  • прямолинейно-параболическая орбита

Запущенное радиально тело удалится на бесконечность от притягивающего центра, имея на бесконечности скорость равную нулю. Соответствует случаю движения с параболической скоростью. Самый простой случай, ибо не требует замены в интеграле

Принимая начальные условия первого случая, получаем явный закон движения


  • прямолинейно-гиперболическая орбита

Соответствует уходу от притягивающего центра на бесконечность. На бесконечности тело будет иметь скорость, . Вводим замену

и вычисляем интеграл

Полагая , получаем

Полагая начальные условия аналогичными первому случаю, имеем гиперболическое радиальное уравнение Кеплера

где

Решение уравнения Кеплера

Решение уравнения Кеплера в эллиптическом и гиперболическом случаях существует и единственно при любых вещественных M[2]. Для круговой орбиты (e = 0) уравнение Кеплера принимает тривиальный вид М = E. В общем виде Уравнение Кеплера трансцендентное. Оно не решается в алгебраических функциях. Однако, его решение можно найти различными способами с помощью сходящихся рядов. Общее решение уравнения Кеплера можно записать с помощью рядов Фурье:

,

где

функция Бесселя.

Этот ряд сходится, когда величина ε не превышает значения предела Лапласа.

Приближённые методы

Среди численных методов решения уравнения Кеплера часто используются метод неподвижной точки («метод простой итерации») и метод Ньютона[3]. Для эллиптического случая в методе неподвижной точки за начальное значение E0 можно взять M, а последовательные приближения имеют следующий вид[2]:

В гиперболическом случае метод неподвижной точки подобным образом использовать нельзя, однако этот метод даёт возможность вывести для такого случая другую формулу приближений (с гиперболическим арксинусом)[2]:

Примечания

  1. Лукьянов, Ширмин, 2009, с. 70—71.
  2. 1 2 3 Балк М. Б. Решение уравнения Кеплера // Элементы динамики космического полета. — М.: Наука, 1965. — С. 111—118. — 340 с. — (Механика космического полета).
  3. Балк М. Б., Демин В.Г., Куницын А.Л. Решение уравнения Кеплера // Сборник задач по небесной механике и космодинамике. — М.: Наука, 1972. — С. 63. — 336 с.


Литература

  • Д. Е. Охоцимский, Ю. Г. Сихарулидзе. Основы механики космического полета. — Москва: «Наука», 1990.
  • В. Е. Жаров. Сферическая астрономия. — Фрязино, 2006. — С. 480. — ISBN ISBN 5-85099-168-9.
  • Г. М. Фихтенгольц. Курс дифференциального и интегрального исчисления. Том 3.
  • Лукьянов Л.Г., Ширмин Г. И. Лекции по небесной механике. — Алматы, 2009. — С. 276.
Эта страница в последний раз была отредактирована 7 ноября 2020 в 07:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).