Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Унитарный оператор — ограниченный линейный оператор U : H → H на гильбертовом пространстве H, который удовлетворяет соотношению

где U — эрмитово сопряжённый к U оператор, и I : H → H единичный оператор. Это свойство эквивалентно следующим:

  1. U сохраняет скалярное произведение 〈  ,  〉 гильбертового пространства, то есть для всех векторов x и y в гильбертовом пространстве
  2. Uсюръективный оператор.

Это также эквивалентно, казалось бы более слабому условию:

  1. U сохраняет скалярное произведение, и
  2. образ U — плотное множество.

Чтобы увидеть это, заметим, что U изометричен (а поэтому является ограниченным линейным оператором). Это следует из того, что U сохраняет скалярное произведение. Образ U — плотное множество. Очевидно, что U−1 = U.

Унитарный элемент это обобщение понятия унитарного оператора. В унитарной *-алгебре элемент U алгебры называется унитарным элементом, если

где I единичный элемент.[1]

Свойства унитарных преобразований:

  • оператор унитарного преобразования всегда обратим
  • если оператор эрмитов, то оператор унитарен.

Примеры

  • Тождественный оператор — тривиальный пример унитарного оператора.
  • Вращения в  — это простейший нетривиальный пример унитарного оператора. Вращения не изменяют длины векторов и угол между двумя векторами. Этот пример также может быть обобщён на .
  • В векторном пространстве комплексных чисел умножение на число с модулем , то есть число вида для , является унитарным оператором. называется фазой. Можно заметить, что значение , кратное , не влияет на результат, поэтому множество независимых унитарных операторов в топологически эквивалентно окружности.

Свойства

  • Спектр унитарного оператора U лежит на единичной окружности. Это можно увидеть из спектральной теоремы для нормального оператора. По этой теореме, U унитарно эквивалентно умножению на измеримую по Борелю функцию на , для некоторого пространства с мерой (, ). Из следует .

Унитарные преобразования в физике

В квантовой механике состояние квантовой системы описывается вектором в гильбертовом пространстве. Норма вектора состояния изолированной квантовой системы описывает вероятность найти систему хоть в каком-либо состоянии, а значит, она обязана равняться единице. Соответственно, эволюция квантовой системы во времени — это некоторый оператор, зависящий от времени, и, из-за требования сохранения нормы, он является унитарным. Неунитарные операторы эволюции (или, что то же самое, неэрмитовые гамильтонианы) для изолированной квантовой системы запрещены в квантовой механике.

Литература

Примечания

  1. Doran, Robert S.; Victor A. Belfi. Characterizations of C*-Algebras: The Gelfand-Naimark Theorems (англ.). — New York: Marcel Dekker (англ.), 1986. — ISBN 0824775694.
Эта страница в последний раз была отредактирована 9 ноября 2020 в 11:58.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).