Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Туннельное магнитосопротивление

Из Википедии — свободной энциклопедии

Пример структуры, в которой возникает эффект туннельного магнетосопротивления.

Туннельное магни́тное сопротивле́ние, туннельное магнитосопротивление или магнетосопротивление (сокр. ТМС, англ. Tunnel magnetoresistance, сокр. TMR) — квантовомеханический эффект, проявляется при протекании тока между двумя слоями ферромагнетиков, разделенных тонким (около 1 нм) слоем диэлектрика. При этом общее сопротивление устройства, ток в котором протекает из-за туннельного эффекта, зависит от взаимной ориентации полей намагничивания двух магнитных слоев. Сопротивление выше при антипараллельной намагниченности слоев. Эффект туннельного магнитного сопротивления похож на эффект гигантского магнитного сопротивления, но в нём вместо слоя немагнитного металла используется слой изолирующего туннельного барьера.

История открытия

Эффект был открыт в 1975 году Мишелем Жюльером, использовавшим железо в качестве ферромагнетика и оксид германия в качестве диэлектрика (структура Fe/GeO/Co). Данный эффект проявлялся при температуре 4,2 К, при этом относительное изменение сопротивления составляло около 14 %, поэтому ввиду отсутствия практического применения он не привлек к себе внимания[1].

При комнатной температуре действие эффекта впервые было открыто в 1991 году Терунобу Миязаки (Университет Тохоку, Япония), изменение сопротивления составило всего 2,7 %. Позже, в 1994 году, Миядзаки впервые обнаружил в переходе Fe/Al2O3/Fe отношение магнитосопротивления 30 % при 4,2 К и 18 % при 300 K[2]. Независимо от него группой ученых во главе с Джагадишем Мудера в соединениях CoFe и Co был обнаружен эффект 11,8 %[3], в связи с возобновлением интереса к исследованиям в этой области после открытия эффекта гигантского магнитного сопротивления. Наибольший эффект, наблюдаемый в то время с изоляторами из оксида алюминия, составлял около 70 % при комнатной температуре.

В 2001 году группа Батлера и группа Матона независимо сделали теоретическое предсказание, что при использовании железа в качестве ферромагнетика и оксида магния в качестве диэлектрика эффект туннельного магнитного сопротивления может возрасти на несколько тысяч процентов. В том же году Боуэн и др. первыми сообщили об экспериментах, показывающих значительное туннельное магнитосопротивление в туннельном переходе на основе MgO (Fe/MgO/FeCo)[4].

В 2004 году группа Перкина и группа Юаса смогли изготовить устройства на основе Fe/MgO/Fe и достичь величины туннельного магнитосопротивления в 200 % при комнатной температуре[5].

В 2007 году устройства на основе ТМР эффекта с оксидом магния полностью заменили устройства на основе эффекта гигантского магнитного сопротивления на рынке устройств магнитного хранения информации.

В 2008 году С. Икеда, Х. Оно и др. из Университета Тохоку в Японии наблюдали эффект относительного изменения сопротивления до 604 % при комнатной температуре и более 1100 % при 4,2 К в соединениях CoFeB/MgO/CoFeB[6]. Однако впоследствии оказалось, что столь большие значения являлись результатом ошибки датчика сопротивления, и статьи были отозваны.

Теория

В классической физике, если энергия частицы меньше высоты барьера, то она полностью отражается от барьера. Напротив, в квантовой механике существует отличная от нуля вероятность нахождения частицы по другую сторону барьера. В структуре ферромагнит — изолятор — ферромагнит для электрона энергией εF изолятор представляет собой барьер толщиной d и высотой εВ > εF.

Рассмотрим зонную структуру магнитных (Co,Fe,Ni) металлов. Переходные металлы имеют 4s, 4p и 3d валентные электроны, различающиеся орбитальным моментом. Состояния 4s и 4p образуют sp — зону проводимости, в которой электроны имеют высокую скорость, малую плотность состояний и, следовательно, большую длину свободного пробега, то есть можно предполагать, что они ответственны за проводимость 3d металлов. В то же время d-зона характеризуется высокой плотностью состояний и низкой скоростью электронов.

Туннельный контакт ФМ-И-ФМ и энергетическая структура при антиферромагнитном обменном взаимодействии (В=0).

Как известно, у ферромагнитных 3d металлов d-зона расщеплена вследствие обменного взаимодействия. В соответствии с принципом Паули из-за кулоновского отталкивания d электронов им энергетически более выгодно иметь параллельно ориентированные спины, что приводит к появлению спонтанного магнитного момента. Иными словами, вследствие обменного расщепления d зоны число занятых состояний различно для электронов с направлением спина вверх и вниз, что дает не равный нулю магнитный момент.

Туннельный контакт ФМ-И-ФМ и энергетическая структура d-зоны при ферромагнитном спаривании (B=Bs).

В отсутствие магнитного поля ферромагнитные электроды имеют противоположное направление намагниченностей (антипараллельная конфигурация, АР). Зона d — электронов расщеплена обменным взаимодействием как показано на рисунке. При этом происходит туннелирование электронов со спином вверх из большего числа состояний в меньшее и наоборот для электронов с противоположным спином. Наложение магнитного поля приводит к параллельной ориентации (Р) намагниченности ферромагнитных электродов. В этом случае электроны со спином вверх туннелируют из большего числа состояний в большее, а электроны со спином вниз — из малого числа состояний в малое. Это приводит к различию туннельных сопротивлений для параллельной и антипараллельной конфигурации. Данное изменение сопротивления при переориентации намагниченности во внешнем магнитном поле и является проявлением туннельного магнитосопротивления (ТМС).

В настоящее время на основании эффекта туннельного магнитного сопротивления создана магниторезистивная оперативная память (MRAM), и он также применяется в считывающих головках жестких дисков.

Примечания

  1. M. Jullière. Tunneling between ferromagnetic films (англ.) // Phys. Lett.  (англ.) : journal. — 1975. — Vol. 54A. — P. 225—226. sciencedirect Архивная копия от 8 июля 2009 на Wayback Machine
  2. Miyazaki, T; Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction (англ.) // Journal of Magnetism and Magnetic Materials. — 1995. — January (vol. 139). — P. L231-L234. — ISSN 0304-8853. — doi:10.1016/0304-8853(95)90001-2.
  3. J. S. Moodera; et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions (англ.) // Physical Review Letters. — 1995. — 1 April (vol. 74, iss. 16). — P. 3273—3276. — doi:10.1103/PhysRevLett.74.3273.
  4. M. Bowen; et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) (англ.) // Applied Physics Letters. — 2001. — September (vol. 79, iss. 11). — doi:10.1063/1.1404125. Архивировано 29 января 2022 года.
  5. S. Yuasa; T. Nagahama; A. Fukushima; Y. Suzuki, K. Ando. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions (англ.) // Nature Materials. — 2004. — December (vol. 3, iss. 12). — P. 868—871. — doi:10.1038/nmat1257. Архивировано 28 мая 2021 года.
  6. Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y. M.; Miura, K.; Hasegawa, H.; Tsunoda, M.; Matsukura, F.; Ohno, H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature (англ.) // Applied Physics Letters. — 2008. — August (vol. 93, iss. 8). — doi:10.1063/1.2976435. Архивировано 29 июля 2020 года.
Эта страница в последний раз была отредактирована 22 мая 2023 в 10:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).