Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Треугольник Шарыгина

Из Википедии — свободной энциклопедии

Треугольник Шарыгинатреугольник, не являющийся равнобедренным, основания биссектрис которого образуют равнобедренный треугольник[1].

Был впервые рассмотрен Игорем Фёдоровичем Шарыгиным в 1982 году в книге «Задачи по геометрии. Планиметрия»[2][3].

Треугольники Шарыгина представляют интерес, так как существуют в отличие от аналогичных треугольников, в определении которых вместо биссектрис использованы, например, медианы или высоты[4].

Существование треугольников Шарыгина

Произвольный треугольник Шарыгина с основными обозначениями, где  A 1 B 1 = A 1 C 1 {\displaystyle A_{1}B_{1}=A_{1}C_{1}} .
Произвольный треугольник Шарыгина с основными обозначениями, где .

Для любого угла такого, что , существует с точностью до подобия ровно один треугольник Шарыгина с одним из углов, равным , причём для любого треугольника Шарыгина косинус одного из его углов лежит в указанном интервале.

Сам угол в градусах удовлетворяет приближённому двойному неравенству [1][3].

Кубика Шарыгина

Кубикой Шарыгина называется полученная в доказательстве выше кубика (имеющая более простой, но не удовлетворяющий формальному определению кубики вариант записи: ), задающая необходимое и достаточное условие для того, чтобы треугольник со сторонами являлся треугольником Шарыгина с равными сторонами (см. рисунок).

Конкретные примеры

Треугольник Шарыгина, образованный тремя вершинами правильного семиугольника.
Треугольник Шарыгина, образованный тремя вершинами правильного семиугольника.

В правильных многоугольниках

На момент 2017 года известен только один пример треугольника Шарыгина, вершины которого могут являться некоторыми вершинами правильного многоугольника[4]. В данном примере вершины треугольника являются первой, второй и четвёртой вершинами правильного семиугольника[1].

С целыми длинами сторон

Существует бесконечное количество различных целочисленных треугольников Шарыгина, что было доказано при помощи теории эллиптических кривых[4] (конкретно была рассмотрена эллиптическая кривая, задаваемая кубикой Шарыгина). Пример, одна из сторон в котором является наименьшей из возможных, имеет следующий набор сторон: [1]. Минимальность данного примера была выяснена простым перебором[4].

Вариации

Вариация треугольника Шарыгина для двух внешних биссектрис и одной внутренней.
Вариация треугольника Шарыгина для двух внешних биссектрис и одной внутренней.
  • Рассматриваются также аналогичные треугольники, в которых равнобедренным является не треугольник, образованный основаниями биссектрис внутренних углов, а треугольник, образованный одним основанием биссектрисы внутреннего угла и двумя основаниями внешних биссектрис к двум другим углам.[5]

Примечания

Литература

Ссылки

Эта страница в последний раз была отредактирована 7 декабря 2020 в 07:26.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).