Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Точки Торричелли — две точки, из которых все стороны треугольника видны либо под углом в 60°, либо под углом в 120°. Эти точки в треугольнике — «парные». Иногда эти точки называют точками Ферма или точками Ферма-Торричелли.

  • Две Точки Торричелли — это точки пересечения отрезков, соединяющих вершины треугольника:
Построение точки Торричелли для треугольников с углами, не превосходящими 120°.
Построение точки Торричелли для треугольников с углами, не превосходящими 120°.

Свойства

Гипербола Киперта — описанная гипербола, проходящая через центроид и ортоцентр. Если на сторонах треугольника построить подобные равнобедренные треугольники (наружу или внутрь), а затем соединить их вершины с противоположными вершинами исходного треугольника, то три таких прямые пересекутся в одной точке, лежащих на гиперболе Киперта. В частности, на этой гиперболе лежат точки Торричелли и точки Наполеона (точки пересечения чевиан, соединяющие вершины с центрами построенных на противоположных сторонах правильных треугольников)[2].

Замечание

Кстати, на первом рисунке справа центры трёх равносторонних треугольников сами являются вершинами нового равностороннего треугольника (Теорема Наполеона). Кроме того, .

Литература

См. также

Примечания

  1. Yiu, 2010, с. 175–209.
  2. <span class="nowrap">Акопян А. В.</span>, <span class="nowrap">Заславский А. А.</span>. Геометрические свойства кривых второго порядка. — 2-е изд., дополн.. — 2011. — С. 125—126.

Литература

Эта страница в последний раз была отредактирована 17 апреля 2020 в 14:24.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).