Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Список объектов, названных в честь Леонарда Эйлера

Из Википедии — свободной энциклопедии

Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера»[1].

1,2-метровый рефлектор «Леонард Эйлер» обсерватории Ла-Силья (Чили)
1,2-метровый рефлектор «Леонард Эйлер» обсерватории Ла-Силья (Чили)

Теоремы

Уравнения

Функции

  • Функция Эйлера  — количество натуральных чисел, не превосходящих и взаимно простых с ним. *:
где  — простое число и пробегает все значения, участвующие в разложении на простые сомножители.

Тождества

которое справедливо для любой алгебраической формы (однородного многочлена) степени

Формулы

где  — кривизна нормального сечения поверхности в направлении , и  — главные кривизны (с соответствующими главными направлениями и ),  — угол между направлениями и .

Интегралы

Числа

Прочие математические понятия

Прочее

Золотая медаль имени Леонарда Эйлера
Золотая медаль имени Леонарда Эйлера

Примечания

  1. Colin Beveridge. Cracking Mathematics. — London: Cassell Illustrated; UK, 2016. — P. 215. — 499 p. — (Cracking). — ISBN 978-1844038626.
  2. При пеньковом канате и деревянной свае (тумбе), когда коэффициент трения больше, усилие потребуется до смешного ничтожное, лишь бы тумба была прочной и веревка (канат) были достаточно крепкими и могли выдержать натяжение.
    Перельман Я. И. Занимательная физика. в 2-х кн. Кн. 2 / Под ред. А. В. Митрофанова. — 22-е изд., стер. — М.: Наука. Гл. ред. физ.-мат. лит., 1986. — с. 35-37. — 272 с.
    Ландау Л. Д., Китайгородский А. И. Физика для всех: Физические тела. — 5-е изд., испр. — М.: Наука. Главная редакция физ.-мат. литературы, 1982. — с. 31-32, 132—133. — 208 с.
  3. Исаак Кушнир. Геометрия. Поиск и вдохновение (Геометрия на баррикадах). — Litres, 2015-11-13. — С. 306. — 593 с. — ISBN 9785457918894.
  4. Арнольд В. И. Группы Эйлера и арифметика геометрических прогрессий. — М. : Издательство МЦНМО, 2003. — ISBN 5-94057-141-7.
Эта страница в последний раз была отредактирована 19 апреля 2021 в 15:59.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).