Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Теорема о рациональных корнях

Из Википедии — свободной энциклопедии

В алгебре теоре́ма о рациона́льных корня́х (также тест на рациона́льные ко́рни) определяет рамки для рациональных корней многочлена вида:

с целыми коэффициентами и .

Теорема утверждает, что каждый рациональный корень , где и  — взаимно простые числа, удовлетворяет условию, что

  • является делителем свободного члена ,
  • является делителем старшего коэффициента .

Теорема о рациональных корнях является частным случаем леммы Гаусса.

Применение

Теорема используется для нахождения всех рациональных корней многочлена, если таковые существуют. С её помощью определяется конечное количество возможных решений, подлежащих проверке подстановкой. Если рациональный корень найден, исходный многочлен может быть поделён без остатка на с получением многочлена меньшей степени, чьи корни также являются корнями исходного многочлена.

Кубическое уравнение

Кубическое уравнение в общем виде:

с целыми коэффициентами имеет три решения в комплексных числах. Если тест на рациональные корни не выявляет таковых, то единственным способом выражения решений является использование кубических корней. Однако в случае выявления хотя бы одного рационального решения r, вынесение (x-r) за скобки приводит к квадратному уравнению, которое возможно решить через дискриминант.

Доказательство

Пусть:

.

Предположим, что для некоторых взаимно простых целых и :

.

Умножая обе части уравнения на , вынося за скобки и перенося свободный член с противоположным знаком в правую часть уравнения, получаем:

.

Видно, что является делителем . Но и  — взаимно простые числа, значит, также должно быть делителем .

Если, напротив, перенести старший член в правую часть уравнения и вынести за скобки, получим:

.

Сделаем вывод о делимости на [1].

Примеры

Пример 1

Каждый рациональный корень многочлена

должен иметь делитель единицы в числителе и делитель двойки в знаменателе. Таким образом, возможными рациональными корнями являются и . Однако ни один из них не обращает выражение в ноль, следовательно, многочлен рациональных корней не имеет.

Пример 2

Каждый рациональный корень многочлена

должен иметь делитель шестерки в числителе и делитель единицы в знаменателе, откуда возможными корнями являются . Из них , и обращают выражение в ноль, являясь, таким образом, корнями многочлена.

Примечания

  1. Arnold, Denise. 4 unit mathematics. — Melbourne: Edward Arnold, 1993. — 306 pages с. — ISBN 0340543353, 9780340543351.

Литература

  • Miller C. D., Lial M. L., Schneider D. I. Fundamentals of college algebra (англ.). — 3rd edition. — Scott & Foresman/Little & Brown Higher Education, 1990. — P. 216–221. — ISBN 0-673-38638-4.
  • Jones P. S., Bedient J. D. The historical roots of elementary mathematics (англ.). — Dover Courier Publications, 1998. — P. 116–117. — ISBN 0-486-25563-8.
  • Larson R. Calculus: an applied approach (англ.). — Cengage Learning, 2007. — P. 23–24. — ISBN 978-0-618-95825-2.
Эта страница в последний раз была отредактирована 14 июня 2023 в 06:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).