Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Теорема о гномоне[1] — это геометрическая теорема. Она утверждает, что два параллелограмма в гномоне имеют равную площадь.

Теорема о гномоне утверждает, что площадь зеленой зоны равна площади красной.

Формулировка

Дан параллелограмм , на диагонали отмечена точка . Прямая, параллельная и проходящая через точку , пересекает сторону в точке , а сторону — в точке . Прямая, параллельная и проходящая через точку , пересекает сторону в точке , а сторону — в точке . Теорема о гномоне утверждает, что у параллелограммов и равная площадь[2].

Гномон — это название L-образной фигуры, в данном примере гномоном является фигура . Параллелограммы равной, согласно теореме, площади, называются «дополнениями» (англ. complements) гномона.

Доказательство

Для доказательства теоремы рассматриваются площадь самого большого параллелограмма () и двух внутренних параллелограммов, внутри которых находится диагональ (это параллелограммы и ). Во-первых, по свойству параллелограмма диагонали делят параллелограмм на два треугольника равной площади. Во-вторых, разница площади самого большого параллелограмма и двух параллелограммов, внутри которых находится диагональ — это и есть площадь двух дополнений гномона (на рисунке дополнения гномона выделены зелёным и красным)[3]. Отсюда следует:

Связанные утверждения и обобщения

Геометрическое представление деления числа a на b
На данном чертеже выполняется соотношение

Теорема о гномоне используется для того, чтобы построить новый параллелограмм или прямоугольник равной площади с помощью циркуля и линейки. Также она позволяет дать геометрическую интерпретацию деления, что позволяет перевести геометрические задачи в алгебраические. Так, если даны длины двух отрезков, можно построить третий, равный частному данных отрезков. Ещё один способ применения теоремы — разделение отрезка точкой точно в таком же отношении, как разделён данный отрезок (см. чертёж)[2].

Теорема в пространстве. — параллелепипед, имеют одинаковый объём.

Аналогичное утверждение может быть сделано в пространстве. В этом случае даётся точка на пространственной диагонали параллелепипеда и вместо двух параллельных прямых появляются три плоскости. Три плоскости разделяют параллелепипед на восемь меньших параллелепипедов, две плоскости находятся рядом с диагональю. Три параллепипеда здесь играют роль дополнений, они имеют равный объём[4].

История

Теорема о гномоне описана в «Началах» Евклида (приблизительно в 300 год до н. э.), с её помощью в книге доказываются и другие теоремы. Теорема описана под номером 43 в первой книге «Начал», причём Евклид не использовал для описания чертежа термин «гномон» Он будет введён во второй книге «Начал». С помощью гномона Евклид доказывает и другие теоремы, например, №6 в книге II, №29 в книге VI и теоремы 1, 2, 3 и 4 в книге XIII[3][5][6].

Литература

  • Lorenz Halbeisen, Norbert Hungerbühler, Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie. — Springer-Verlag, 2016-09-02. — 219 с. — ISBN 9783662530344.
  • GEORGE W. EVANS. SOME OF EUCLID'S ALGEBRA // The Mathematics Teacher. — 1927. — Т. 20, вып. 3. — С. 127–141. — ISSN 0025-5769.
  • William J. Hazard. Generalizations of the Theorem of Pythagoras and Euclid's Theorem of the Gnomon // The American Mathematical Monthly. — 1929. — Т. 36, вып. 1. — С. 32–34. — ISSN 0002-9890. — doi:10.2307/2300175.
  • Vittorio Capecchi, Massimo Buscema, Pierluigi Contucci, Bruno D'Amore. Applications of Mathematics in Models, Artificial Neural Networks and Arts: Mathematics and Society. — Springer Science & Business Media, 2010-08-03. — 616 с. — ISBN 9789048185818.

Ссылки

Примечания

  1. Цейтен И. Г. История математики в древности и в средние века. — Directmedia, 2014-12-22. — 228 с. — ISBN 9785445815303.
  2. 1 2 Lorenz Halbeisen, Norbert Hungerbühler, Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie. — Springer-Verlag, 2016-09-02. — 219 с. — ISBN 9783662530344.
  3. 1 2 Roger Herz-Fischler. A Mathematical History of the Golden Number. — Courier Corporation, 2013-12-31. — 228 с. — ISBN 9780486152325.
  4. William J. Hazard. Generalizations of the Theorem of Pythagoras and Euclid's Theorem of the Gnomon // The American Mathematical Monthly. — 1929. — Т. 36, вып. 1. — С. 32–34. — ISSN 0002-9890. — doi:10.2307/2300175. Архивировано 28 ноября 2018 года.
  5. Vittorio Capecchi, Massimo Buscema, Pierluigi Contucci, Bruno D'Amore. Applications of Mathematics in Models, Artificial Neural Networks and Arts: Mathematics and Society. — Springer Science & Business Media, 2010-08-03. — 616 с. — ISBN 9789048185818.
  6. GEORGE W. EVANS. SOME OF EUCLID'S ALGEBRA // The Mathematics Teacher. — 1927. — Т. 20, вып. 3. — С. 127–141. — ISSN 0025-5769. Архивировано 26 января 2019 года.
Эта страница в последний раз была отредактирована 14 августа 2022 в 13:03.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).