Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Распределение (дифференциальная геометрия)

Из Википедии — свободной энциклопедии

Распределением на многообразии называется подрасслоение касательного расслоения многообразия. Другими словами, в каждой точке выбрано линейное подпространство касательного пространства которое гладко зависит от точки .

Распределения используются в теории интегрируемости и в теории слоений на многообразии.

Определение

Пусть — гладкое -мерное многообразие и . Предположим, что в каждой точке выбрано -мерное подпространство касательного пространства такое, что у любой точки существует окрестность и линейно независимых гладких векторных полей , причем для любой точки , векторы составляют базис подпространства .

В этом случае, совокупность всех подпространств , , называется -мерным распределением на многообразии .

При этом векторные поля называется локальным базисом распределения

Инволютивные распределения

Распределение на называется инволютивным, если в окрестности каждой точки существует локальный базис распределения такой, что все скобки Ли векторных полей принадлежат линейной оболочке , то есть являются линейными комбинациями векторов Условие инволютивности распределения записывается как .

Инволютивные распределения являются касательными пространствами к слоениям. Инволютивные распределения важны тем, что они удовлетворяют условиям теоремы Фробениуса, и таким образом, приводят к интегрируемым системам.

Задание распределения системой 1-форм

На открытом множестве -мерное распределение может быть задано системой гладких 1-форм , определенных в и линейно независимых в каждой точке: оно определяется уравнениями . Если и — системы 1-форм, определяющие распределение в и в , то в пересечении форма , где — такие гладкие функции, что в . Если , говорят, что задана глобальная определяющая система форм.

Интегрируемость распределения

-мерное распределение называется интегрируемым, если через каждую точку проходит -мерная интегральная поверхность, которая касается распределения в каждой своей точке.

Одномерное распределение задается не обращающимся в ноль векторным полем. Такое распределение всегда интегрируемо в силу локальной теоремы существования и единственности решений обыкновенных дифференциальных уравнений.

В -мерном случае, , существуют как интегрируемые, так и неинтегрируемые распределения. Теорема Фробениуса дает необходимое и достаточное условие интегрируемости распределения.

Теорема Фробениуса в терминах векторных полей

Теорема: -мерное распределение интегрируемо тогда и только тогда, когда множество векторов, касательных к распределению, замкнуто относительно скобки Ли.

Таким образом, инволютивные распределения являются интегрируемыми.

Теорема Фробениуса в терминах 1-форм

Теорема: -мерное распределение, заданное системой гладких 1-форм , интегрируемо тогда и только тогда, когда всякий дифференциал

,

где — гладкие 1-формы. Если определяющие формы независимы, это условие эквивалентно системе

.


Интегрируемое распределение определяет слоение на многообразии : его слоями являются интегральные поверхности распределения. Заметим, что -мерное распределение всегда интегрируемо, следовательно, порождает -мерное слоение.

Теорема Тёрстона

Теорема Тёрстона: На замкнутом многообразии всякое распределение гомотопно интегрируемому [1], [2].

Для открытого многообразия критерий гомотопности распределения некоторому интегрируемому распределению был найден Хэфлигером[3].

См. также

Примечания

  1. W. Thurston, The theory of foliations of codimension greater than one — Comm. Math. Helv., 49 (1974), pp. 214–231.
  2. W. Thurston, Existence of codimension one foliations — Ann. of Math., 104:2 (1976), pp. 249–268.
  3. A. Haefliger, Feuilletages sur les variétés ouvertes — Topology, 9:2 (1970), pp. 183–194.

Литература

Эта страница в последний раз была отредактирована 21 декабря 2018 в 18:06.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).