Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.

Общая формулировка

Пусть на ориентируемом многообразии размерности заданы положительно ориентированное ограниченное -мерное подмногообразие () и дифференциальная форма степени класса . Тогда если граница подмногообразия положительно ориентирована, то

где обозначает внешний дифференциал формы .

Теорема распространяется на линейные комбинации подмногообразий одной размерности — так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологиями де Рама и гомологиями циклов многообразия .

Частные случаи

Формула Ньютона — Лейбница

Пусть дана кривая (одномерная цепь), ориентированно направленная от точки к точке , в многообразии произвольной размерности. Форма нулевой степени класса  — это дифференцируемая функция . Тогда формула Стокса записывается в виде

Теорема Грина

Иногда называют теоремой Грина — Римана. Пусть  — плоскость, а  — некоторая её положительно ориентированная ограниченная область с кусочно-гладкой жордановой границей. Пусть форма первой степени, записанная в координатах и  — это выражение Тогда для интеграла от этой формы по положительно ориентированной (против часовой стрелки) границе области верно

Независимое доказательство формулы Грина приведено в её основной статье.

Формула Кельвина — Стокса

Часто называется просто формулой Стокса. Пусть  — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (),  — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:

или в координатной записи:

Часто в правой части пишут интеграл по замкнутому контуру.

Формула Остроградского — Гаусса

Пусть теперь  — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :

В трёхмерном пространстве с координатами это эквивалентно записи:

или

Литература

См. также

Эта страница в последний раз была отредактирована 3 декабря 2021 в 05:10.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).