Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Теорема Кантора — классическое утверждение теории множеств. Доказано Георгом Кантором в 1891 году. Утверждает, что любое множество менее мощно, чем множество всех его подмножеств .

Доказательство

Предположим, что существует множество , равномощное множеству всех своих подмножеств , то есть, что существует такая биекция , ставящая в соответствие каждому элементу множества некоторое подмножество множества .

Рассмотрим множество , состоящее из всех элементов , не принадлежащих своим образам при отображении [1]:

.

Отображение биективно, а , поэтому существует такой, что .

Теперь посмотрим, может ли принадлежать . Если , то , а тогда, по определению , . И наоборот, если , то , а следовательно, . В любом случае, получаем противоречие.

Следовательно, исходное предположение ложно и не равномощно . Таким образом доказана строгость неравенства.

Для определения знака неравенства построим сюръективное отображение g: , сопоставляющее каждому подмножеству , состоящему из единственного элемента, этот самый элемент из . В остались множества (состоящие из более чем одного элемента). Отсюда можно сделать вывод, что .

Примечания

  1. Оно существует по аксиоме выделения, значение есть подмножество А.

Ссылки

См. также

Эта страница в последний раз была отредактирована 10 октября 2023 в 18:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).