Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Тензорный скетч может использоваться для уменьшения количества переменных, необходимых для реализации билинейного пулинга в нейронной сети

Тензорный скетч (англ. tensor sketch) — метод уменьшения размерности, используемый в статистике, машинном обучении и алгоритмах обработки больших данных[1][2]. Он особенно эффективен применительно к векторам, имеющим тензорную структуру. Такой скетч может быть использован для ускорения билинейного объединения в нейронных сетях и является краеугольным камнем во многих алгоритмах числовой линейной алгебры[3].

История

Термин тензорный скетч (эскиз) был придуман в 2013 г.[4] и в том же году описан как метод Расмусом Пегом[5].

Сначала соответствующий метод базировался на использовании быстрого преобразования Фурье, чтобы реализовать быструю свёртку аналогично отсчётному скетчу. В результате дальнейших исследований его обобщили на значительно больший класс методов уменьшения размерности с помощью случайных тензорных проекций.

Тензорные проекции

В основе одного из вариантов тензорного скетча лежит применение торцевого произведения матриц, предложенного Слюсарем В. И.[6] в 1996 г. (англ. face-splitting product)[7][8][9][10][11].

Торцевое произведение двух матриц с однаковым количеством строк и имеет вид[7][8][9][12]:

Целесообразность использования этого произведения заключается в его свойстве:

где  — поэлементное произведение Адамара.

На этой основе произвольный тензорный скетч вида можно представить как , где матрицы и имеют меньшую размерность, и . Поскольку операции и выполнимы за линейное время и соответственно, переход к представлению позволяет выполнить умножение на векторы с тензорной структурой намного быстрее, чем формируется исходное выражение , а именно за время .

Для тензоров более высокого порядка, например, , экономия будет ещё более значимой.

Подобное преобразование удовлетворяет лемме о малых искажениях исходных данных большой размерности.

См. также

Примечания

  1. Low-rank Tucker decomposition of large tensors using: Tensor Sketch. amath.colorado.edu. Boulder, Colorado: University of Colorado Boulder. Дата обращения: 30 июля 2020. Архивировано 14 февраля 2019 года.
  2. Ahle, Thomas; Knudsen, Jakob Almost Optimal Tensor Sketch. Researchgate (3 сентября 2019). Дата обращения: 11 июля 2020. Архивировано 14 июля 2020 года.
  3. Woodruff, David P. «Sketching as a Tool for Numerical Linear Algebra.» Theoretical Computer Science 10.1-2 (2014): 1-157.
  4. Ninh, Pham; Rasmus, Pagh (2013). Fast and scalable polynomial kernels via explicit feature maps. SIGKDD international conference on Knowledge discovery and data mining. Association for Computing Machinery. doi:10.1145/2487575.2487591.
  5. Rasmus, Pagh (2013). "Compressed matrix multiplication". ACM Transactions on Computation Theory, August 2013 Article No.: 9. Association for Computing Machinery. doi:10.1145/2493252.2493254.
  6. Anna Esteve, Eva Boj & Josep Fortiana (2009): Interaction Terms in Distance-Based Regression, Communications in Statistics — Theory and Methods, 38:19, P. 3501 [1] Архивная копия от 26 апреля 2021 на Wayback Machine
  7. 1 2 Slyusar, V. I. (December 27, 1996). "End products in matrices in radar applications" (PDF). Radioelectronics and Communications Systems.– 1998, Vol. 41; Number 3: 50—53. Архивировано (PDF) 27 июля 2020. Дата обращения: 30 июля 2020.
  8. 1 2 Slyusar, V. I. Analytical model of the digital antenna array on a basis of face-splitting matrix products (англ.) // Proc. ICATT- 97, Kyiv : journal. — 1997. — 20 May. — P. 108—109. Архивировано 25 января 2020 года.
  9. 1 2 Slyusar, V. I. A Family of Face Products of Matrices and its Properties (англ.) // Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz : journal. — 1999. — Vol. 35, no. 3. — P. 379—384. — doi:10.1007/BF02733426. Архивировано 25 января 2020 года.
  10. Slyusar, V. I. Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels (англ.) // Radioelectronics and Communications Systems : journal. — 2003. — Vol. 46, no. 10. — P. 9—17. Архивировано 20 сентября 2020 года.
  11. Миночкин А.И., Рудаков В.И., Слюсар В.И. Основы военно-технических исследований. Теория и приложения. Том. 2. Синтез средств информационного обеспечения вооружения и военной техники//Под ред. А.П. Ковтуненко. - Киев: «Гранмна». – 2012. C. 7 - 98; 354 - 521 (2012). Дата обращения: 30 июля 2020. Архивировано 25 января 2020 года.
  12. Slyusar, V. I. (1997-09-15). "New operations of matrices product for applications of radars" (PDF). Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv.: 73—74. Архивировано (PDF) 25 января 2020. Дата обращения: 31 июля 2020.
Эта страница в последний раз была отредактирована 16 декабря 2023 в 23:50.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).