Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Сумма́тор — в кибернетике - устройство, преобразующее информационные сигналы (аналоговые или цифровые) в сигнал, эквивалентный сумме этих сигналов[1]; устройство, производящее операцию сложения.

История

Подробнее см. История компьютера
См. также: История АВМ

Классификация сумматоров

В зависимости от формы представления информации различают сумматоры аналоговые и цифровые[1].

По способу реализации

По принципу действия

  • На счётчиках, считающие количества импульсов входного сигналах.
  • Функциональные, выдающие на выходах значения логической функции суммы по модулю и логической функции разряда переноса:
    • логические, каждый раз вычисляющие функцию разряда суммы по модулю и функцию разряда переноса
    • табличные, с таблицами заранее вычисленных значений функции разряда суммы по модулю и значений функции разряда переноса записанных:
      • в ПЗУ, ППЗУ (аппаратные) (надёжнее и дешевле логических, так как вместо полупроводников, выполняющих логические вычисления, в ПЗУ используются проводники и изоляторы ("прошивки"))[4] или
      • в ОЗУ (аппаратные и программные).

Табличные сумматоры впервые были применены в калькуляторах построенных на реле в США до второй мировой войны.

По архитектуре

  • Четвертьсумматоры — бинарные (двухоперандные) сумматоры по модулю без разряда переноса, характеризующиеся наличием двух входов, на которые подаются два одноразрядных числа, и одним выходом, на котором реализуется их арифметическая сумма по модулю.
  • Полусумматоры — бинарные (двухоперандные) сумматоры по модулю с разрядом переноса, характеризующиеся наличием двух входов, на которые подаются одноимённые разряды двух чисел, и двух выходов: на одном реализуется арифметическая сумма по модулю в данном разряде, а на другом — перенос в следующий (старший) разряд.
  • Полные сумматоры — тринарные (трёхоперандные) сумматоры по модулю с разрядом переноса, характеризующиеся наличием трёх входов, на которые подаются одноимённые разряды двух складываемых чисел и перенос из предыдущего (более младшего) разряда, и двумя выходами: на одном реализуется арифметическая сумма по модулю в данном разряде, а на другом — перенос в следующий (более старший разряд). Такие сумматоры изначально ориентированы только на показательные позиционные системы счисления[источник не указан 3762 дня].
  • Накапливающие сумматоры - снабжённые собственной внутренней памятью.

По способу действия

  • Последовательные (одноразрядные), в которых обработка разрядов чисел ведётся поочерёдно, разряд за разрядом, на одном и том же одноразрядном оборудовании.
  • Параллельнопоследовательные, в которых одновременно параллельно последовательно складываются несколько разрядов пары чисел.
  • Параллельные (многоразрядные), в которых слагаемые складываются одновременно по всем разрядам, и для каждого разряда имеется своё оборудование.

По способу организации переноса[5][6]

По системе счисления

Двоичный сумматор

Двоичный сумматор может быть описан тремя способами:

  1. табличным, в виде таблицы истинности,
  2. аналитическим, в виде формулы (СДНФ),
  3. графическим, в виде логической схемы.

Так как формулы и схемы могут тождественно преобразовываться, то, одной таблице истинности двоичного сумматора могут соответствовать множества различных логических формул и логических схем. Поэтому, с точки зрения получения результата без учёта затрат времени на вычисление суммы, табличный способ определения двоичного сумматора является основным. Обычное табличное и обычное формульное описание сумматора не учитывают времена задержек в реальных логических элементах и не годятся для определения быстродействия реальных сумматоров.

Рис.1. Логическая схема трёхступенчатого двоичного сумматора на двух полусумматорах и логическом элементе 2ИЛИ.
Рис.1. Логическая схема трёхступенчатого двоичного сумматора на двух полусумматорах и логическом элементе 2ИЛИ.
x0=A 1 0 1 0 1 0 1 0
x1=B 1 1 0 0 1 1 0 0
x2= 1 1 1 1 0 0 0 0 Название действия (функции) Номер функции
1 0 0 1 0 1 1 0 Бит суммы по модулю 2 F3,150
1 1 1 0 1 0 0 0 Бит переноса F3,232

Единица переноса возникает в 4 случаях из 8.

СДНФ суммы по модулю 2:

СДНФ бита переноса:

Схема, которая обеспечивает сложение двух однобитных чисел А и В без получения бита переноса из предыдущего разряда называют полусумматором. Полусумматор имеет 4 сигнальных линии: два входа для сигналов, представляющих одноразрядные двоичные числа А и В, и два выхода: сумма А и В по модулю 2 (S) и сигнал переноса в следующий разряд (P). При этом S наименее значимый бит, а P наиболее значимый бит.

Объединив два полусумматора и добавив дополнительную схему ИЛИ, можно создать трёхступенчатый полный сумматор с дополнительным входом Pi-1 (на рисунке 1), который принимает сигнал переноса из предыдущей схемы. Первая ступень на полусумматоре осуществляет сложение двух двоичных чисел и вырабатывает первый частный бит переноса, вторая ступень на полусумматоре осуществляет сложение результата первой ступени с третьим двоичным числом и вырабатывает второй частный бит переноса, третья ступень на логическом элементе 2ИЛИ вырабатывает результирующий бит переноса в старший разряд.

Схема полного сумматора может быть использована в качестве «строительных блоков» для построения схем многоразрядных сумматоров, путём добавления одноразрядных полных сумматоров. Для каждой цифры, которую схема должна быть в состоянии обрабатывать, используется один полный сумматор.

В сумматоре на рис.1 время вычисления суммы по модулю 2 равно 2dt, время вычисления переноса равно 3dt, где dt — время задержки в одном типовом логическом элементе. В m-разрядном сумматоре в худшем случае (единицы переноса во всех разрядах) до последнего разряда сигнал переноса проходит через m-1 разряд, а сумма будет готова ещё через 2dt, поэтому максимальное время сложения равно:

.

Максимальные времена выполнения сложения и вычисления переноса для большего числа разрядов приведены в таблице 1:
Таблица 1.

число разрядов сумматора 1 2 4 8 16 32 64
время выполнения сложения, dt 2 5 11 23 47 95 191
время вычисления переноса, dt 3 6 12 24 48 96 192

Двоичный одноразрядный полный сумматор является полной тринарной (трёхоперандной) двоичной логической функцией с бинарным (двухразрядным) выходом. Все три операнда и оба выходных разряда однобитные.

Десятичный сумматор

Десятичный сумматор можно задать в виде двух таблиц:
с нулём в переносе из предыдущего разряда:

+ 0 0 0 0 0 0 0 0 0 0
+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

и с единицей в переносе из предыдущего разряда:

+ 1 1 1 1 1 1 1 1 1 1
+ 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19

или в виде одной таблицы, в которой единица переноса из предыдущего разряда смещает на одну колонку вправо:

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 11
2 2 3 4 5 6 7 8 9 10 11 12
3 3 4 5 6 7 8 9 10 11 12 13
4 4 5 6 7 8 9 10 11 12 13 14
5 5 6 7 8 9 10 11 12 13 14 15
6 6 7 8 9 10 11 12 13 14 15 16
7 7 8 9 10 11 12 13 14 15 16 17
8 8 9 10 11 12 13 14 15 16 17 18
9 9 10 11 12 13 14 15 16 17 18 19

C соответствующей прошивкой как десятичный сумматор (десятеричный) могут работать шестнадцатеричный сумматор и двадцатисемиричный сумматор-вычитатель на ПЗУ.

Направления развития сумматоров

Быстродействия параллельных сумматоров вполне достаточно для быстрого сложения небольшого количества чисел фиксированной длины.
Так как поразрядное сложение по природе своей последовательно, то при очень большом количестве сложений более выгодно перенастроить то же самое оборудование (АЛУ) для одновременного или не очень одновременного параллельного выполнения нескольких последовательных сложений.

Например, параллельный 64-разрядный двоичный сумматор из 64 двоичных сумматоров со сложными схемами ускоренного переноса сложит 1 пару 64-битных чисел в лучших схемах приблизительно за 5dt, а 32 пары 64-битных чисел приблизительно за 32*5dt=160dt.
32 последовательных двоичных сумматора без схем ускоренного переноса бит за битом сложат 32 пары 64-битных чисел приблизительно за 64*2dt=128dt.
32 последовательных четверичных сумматора без схем ускоренного переноса сложат 32 пары 64-битных чисел приблизительно за (64/lg24)*2dt=64dt.
32 последовательных шестнадцатеричных сумматора без схем ускоренного переноса сложат 32 пары 64-битных чисел приблизительно за (64/lg216)*2dt=32dt.
32 последовательных двухсотпятидесятишестиричных сумматора без схем ускоренного переноса сложат 32 пары 64-битных чисел приблизительно за (64/lg2256)*2dt=16dt, т.е. приблизительно в десять раз быстрее, чем параллельный 64-битный сумматор со схемами ускоренного переноса.
32 последовательных четыретысячидевяностошестиричных сумматора без схем ускоренного переноса сложат 32 пары 64-битных чисел приблизительно за (64/lg24096)*2dt=10,67dt.

См. также

Примечания

Литература

  • Угрюмов Е. П. Элементы и узлы ЭЦВМ. М.: Высшая школа, 1976. — 232 с.
  • Угрюмов Е. П. Цифровая схемотехника. — СПб.: БХВ-Петербург, 2001. — 528 с.
  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. 11. Проектирование арифметических блоков: Сумматор // Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. — 2-е изд. — М.: Вильямс, 2007. — С. 912. — ISBN 0-13-090996-3.

Ссылки

Эта страница в последний раз была отредактирована 9 марта 2021 в 11:54.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).