Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Стягиваемое пространство

Из Википедии — свободной энциклопедии

Стягиваемое пространство — топологическое пространство, гомотопически эквивалентное точке. Это условие равносильно тому, что тождественное отображение на гомотопно постоянному.

Локально стягиваемое пространство — топологическое пространство, каждая точка которого обладает стягиваемой окрестностью.

Свойства

Пространство стягиваемо тогда и только тогда, когда существует такое, что  — деформационный ретракт пространства .

Стягиваемые пространства всегда односвязны; обратное утверждение, в общем случае, не имеет места, стягиваемость — более сильное ограничение, чем односвязность.

Всякое непрерывное отображение стягиваемых пространств является гомотопической эквивалентностью. Два любых непрерывных отображения произвольного пространства в стягиваемое гомотопны; притом если два любых непрерывных отображения в гомотопны, то  — стягиваемое пространство.

Конус для данного пространства  — стягиваемое пространство, таким образом, любое пространство может быть вложено в стягиваемое, что, в свою очередь, свидетельствует о том, что не всякое подпространство стягиваемого пространства стягиваемо. Кроме того, стягиваемо тогда и только тогда, когда существует ретракция .

Примеры и контрпримеры

Стягиваемы -мерное вещественное пространство , любое выпуклое подмножество евклидова пространства, в частности — -мерный шар.

Сфера в бесконечномерном гильбертовом пространстве стягиваема, но при этом -мерные евклидовы сферы нестягиваемы. Всякое непрерывное отображение -мерной сферы в стягиваемое пространство можно непрерывно продолжить на -мерный шар.

Другие примечательные стягиваемые пространства — многообразие Уайтхеда (трёхмерное многообразие, не гомеоморфное ), многообразие Мазура[en] (четырёхмерное гладкое многообразие с краем, не диффеоморфное четырёхмерному шару), дом Бинга, шутовской колпак.

Все многообразия и CW-комплексы локально стягиваемы, но не стягиваемы в общем случае.

Литература

  • Э. Спеньер. Алгебраическая топология. — М.: Мир, 1971. — С. 39—42. — 680 с.
Эта страница в последний раз была отредактирована 2 июля 2015 в 15:39.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).