Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Средняя долгота (англ. Mean longitude) — эклиптическая долгота, на которой бы находилось обращающееся тело, если бы оно двигалось по невозмущённой круговой орбите. На практике представляет собой гибридный угол.[1]

Определение

Средняя долгота тела на орбите вычисляется по формуле l = Ω + ω + M, где Ω — долгота восходящего узла, ω — аргумент перицентра,  M — средняя аномалия, то есть угловое расстояние от тела до перицентра, которое было бы в случае движения тела с постоянной скоростью. Истинная долгота определяется аналогично, L = Ω + ω + ν, где ν — истинная аномалия.
Средняя долгота тела на орбите вычисляется по формуле l = Ω + ω + M, где Ωдолгота восходящего узла, ωаргумент перицентра, Mсредняя аномалия, то есть угловое расстояние от тела до перицентра, которое было бы в случае движения тела с постоянной скоростью. Истинная долгота определяется аналогично, L = Ω + ω + ν, где νистинная аномалия.

Примечания

  • Определим опорное направление ♈ в плоскости эклиптики. Обычно выбирают направление на точку весеннего равноденствия, в этом направлении эклиптическая долгота равна 0°.
  • Орбита объекта обычно наклонена относительно плоскости эклиптики, обозначим угловое расстояние от ♈ до узла пересечения орбиты и эклиптики, в котором тело пересекает эклиптику при движении с юга на север, как долготу восходящего узла, Ω.
  • Обозначим угловое расстояние в плоскости орбиты от восходящего узла до перицентра как аргумент перицентра, ω.
  • Определим среднюю аномалию M как угловое расстояние от точки перицентра, которое имело бы тело, если бы двигалось по круговой орбите с тем же орбитальным периодом, что и у рассматриваемого объекта на эллиптической орбите.

В терминах введённых выше обозначений средняя долгота l равна угловому расстоянию от опорного направления, которое бы имело тело, движущееся с постоянной скоростью:

l = Ω + ω + M,

измеряемое сначала в плоскости эклиптики от ♈ до восходящего узла, затем в плоскости орбиты тела от восходящего узла до среднего положения.[2]

Обсуждение

Средняя долгота, как и средняя аномалия, не является углом между физическими объектами. Она является мерой того, как далеко при движении по орбите тело удалилось от опорного направления. В то время как средняя долгота показывает среднее положение и предполагает постоянную скорость, истинная долгота является мерой реальной долготы в предположении движения тела с орбитальной скоростью, которая изменяется при движении по эллиптической орбите. Разность между данными двумя величинами известна как уравнение центра.[3]

Формулы

Из данных выше определений следует выражение для долготы перицентра:

ϖ = Ω + ω.

Тогда среднюю долготу можно представить в виде[1]

l = ϖ + M.

Также используется понятие средней долготы на эпоху, ε. Данная величина является средней долготой для заданного момента t0, называемого эпохой. Тогда среднюю долготу можно выразить следующим образом:[2]

l = ε + n(tt0), или:l = ε + nt, поскольку t = 0 на эпоху t0.

где n является средним угловым движением, t — произвольный момент времени. В некоторых вариантах набора орбитальных элементов ε является одним из шести параметров.[2]

Примечания

  1. 1 2 Meeus, Jean. Astronomical Algorithms. — Willmann-Bell, Inc., Richmond, VA, 1991. — С. 197—198. — ISBN 0-943396-35-2.
  2. 1 2 3 Smart, W. M. Textbook on Spherical Astronomy. — sixth. — Cambridge University Press, Cambridge, 1977. — С. 122. — ISBN 0-521-29180-1.
  3. Meeus, Jean (1991). p. 222


Эта страница в последний раз была отредактирована 24 апреля 2021 в 09:57.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).