Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Список групп сферической симметрии

Из Википедии — свободной энциклопедии

Точечная группа в трёхмерном пространстве

Симметрии-инволюции
Cs, (*)
[ ] = node_c2

Циклическая симметрия
Cnv, (*nn)
[n] = node_c1nnode_c1

Диэдральная симметрия
Dnh, (*n22)
[n,2] = node_c1nnode_c12node_c1
Группы многогранников, [n,3], (*n32)

Тетраэдральная симметрия
Td, (*332)
[3,3] = node_c13node_c13node_c1

Октаэдральная симметрия
Oh, (*432)
[4,3] = node_c24node_c13node_c1

Икосаэдральная симметрия
Ih, (*532)
[5,3] = node_c25node_c23node_c2

Группы сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии. Существует пять фундаментальных классов симметрии, которыми обладают треугольные фундаментальные области: диэдрическая, циклическая, тетраэдральная симметрия, октаэдральная симметрия[en] и икосаэдральная симметрия.

Статья перечисляет группы согласно символам Шёнфлиса, записи Коксетера[en] [1], орбифолдной записи[en] [2] и порядка. Конвей использовал вариант записи Шёнфлиса, основанном на алгебраической структуре группы кватернионов, с обозначениями одной или двумя заглавными буквами и полным набором нижних числовых индексов. Порядок группы обозначается индексом, если только он не удваивается символом плюс-минус ("±"), который подразумевает центральную симметрию [3].

Символика Германа — Могена (интернациональная запись) приводится также. Группы кристаллографии, 32 в общем числе, являются подмножеством с элементами порядка 2, 3, 4 и 6 [4].

Симметрии-инволюции

Имеется четыре симметрии, которые являются обратными себе, т.е. инволюциями: тождественное преобразование (C1), зеркальная симметрия (Cs), вращательная симметрия (C2), и центральная симметрия (Ci).

Инт. Геом.
[5]
Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
1 1 11 C1 C1 ][
[ ]+
1
2 2 22 D1
= C2
D2
= C2
[2]+ 2
Инт. Геом. Ориб. Шёнф. Конвей Кокс. Пор. Фунд.
область
1 22 × Ci
= S2
CC2 [2+,2+] 2
2
= m
1 * Cs
= C1v
= C1h
±C1
= CD2
[ ] 2

Циклическая симметрия

Существуют четыре бесконечных семейства циклической симметрии[en] с n=2 и выше. (n может быть равен 1 как особый случай нет симметрии)

Инт. Гео
Орб. Шёнф. Конвей. Кокс. Пор. Фунд.
область
2 2 22 C2
= D1
C2
= D2
[2]+
[2,1]+
2
mm2 2 *22 C2v
= D1h
CD4
= DD4
[2]
[2,1]
4
4 42 S4 CC4 [2+,4+] 4
2/m 22 2* C2h
= D1d
±C2
= ±D2
[2,2+]
[2+,2]
4
Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
3
4
5
6
n
3
4
5
6
n
33
44
55
66
nn
C3
C4
C5
C6
Cn
C3
C4
C5
C6
Cn
[3]+
[4]+
[5]+
[6]+
[n]+
3
4
5
6
n
3m
4mm
5m
6mm
-
3
4
5
6
n
*33
*44
*55
*66
*nn
C3v
C4v
C5v
C6v
Cnv
CD6
CD8
CD10
CD12
CD2n
[3]
[4]
[5]
[6]
[n]
6
8
10
12
2n
3
8
5
12
-
62
82
10.2
12.2
2n.2




S6
S8
S10
S12
S2n
±C3
CC8
±C5
CC12
CC2n / ±Cn
[2+,6+]
[2+,8+]
[2+,10+]
[2+,12+]
[2+,2n+]
6
8
10
12
2n
3/m=6
4/m
5/m=10
6/m
n/m
32
42
52
62
n2
3*
4*
5*
6*
n*
C3h
C4h
C5h
C6h
Cnh
CC6
±C4
CC10
±C6
±Cn / CC2n
[2,3+]
[2,4+]
[2,5+]
[2,6+]
[2,n+]
6
8
10
12
2n

Диэдральная симметрия

Существует три бесконечных семейства с диэдральной симметрией[en] с n равным 2 и выше. (n может быть равен 1 как специальный случай)

Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
222 2.2 222 D2 D4 [2,2]+ 4
42m 42 2*2 D2d DD8 [2+,4] 8
mmm 22 *222 D2h ±D4 [2,2] 8
Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
32
422
52
622
3.2
4.2
5.2
6.2
n.2
223
224
225
226
22n
D3
D4
D5
D6
Dn
D6
D8
D10
D12
D2n
[2,3]+
[2,4]+
[2,5]+
[2,6]+
[2,n]+
6
8
10
12
2n
3m
82m
5m
12.2m
62
82
10.2
12.2
n2
2*3
2*4
2*5
2*6
2*n
D3d
D4d
D5d
D6d
Dnd
±D6
DD16
±D10
DD24
DD4n / ±D2n
[2+,6]
[2+,8]
[2+,10]
[2+,12]
[2+,2n]
12
16
20
24
4n
6m2
4/mmm
10m2
6/mmm
32
42
52
62
n2
*223
*224
*225
*226
*22n
D3h
D4h
D5h
D6h
Dnh
DD12
±D8
DD20
±D12
±D2n / DD4n
[2,3]
[2,4]
[2,5]
[2,6]
[2,n]
12
16
20
24
4n

Симметрии многогранников

Существует три типа симметрии многогранников[en]: тетраэдральная симметрия, октаэдральная симметрия[en] и икосаэдральная симметрия, названные по правильным многогранникам с треугольными гранями, которые обладают такими симметриями.

Тетраэдральная симметрия
Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
23 3.3 332 T T [3,3]+
= [4,3+]+
12
m3 43 3*2 Th ±T [4,3+] 24
43m 33 *332 Td TO [3,3]
= [1+,4,3]
24
Октаэдральная симметрия[en]
Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
432 4.3 432 O O [4,3]+
= [[3,3]]+
24
m3m 43 *432 Oh ±O [4,3]
= [[3,3]]
48
Икосаэдральная симметрия
Инт. Геом. Орб. Шёнф. Конвей Кокс. Пор. Фунд.
область
532 5.3 532 I I [5,3]+ 60
532/m 53 *532 Ih ±I [5,3] 120

См. также

Примечания

Литература

  • Peter R. Cromwell, Polyhedra (1997), Appendix I
  • Donald E. Sands. Crystal Systems and Geometry // Introduction to Crystallography. — Mineola, New York: Dover Publications, Inc., 1993. — С. 165. — ISBN 0-486-67839-3.
  • Джон Х. Конвей, Дерек А. Смит. О кватернионах и октавах = On Quaternions and Octonions. — Москва: МЦНМО, 2009. — ISBN 978-5-94057-517-7.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass. The Symmetries of Things. — New-York: A K Peters/CRC Press,, 2008. — ISBN 978-1-56881-220-5.
  • H.S.M. Coxeter. Kaleidoscopes: Selected Writings of H.S.M. Coxeter / F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss,. — Wiley-Interscience Publication,, 1995. — ISBN 978-0-471-01003-6.
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Norman Johnson. Chapter 11: Finite symmetry groups // Geometries and Transformations. — 2015.
  • D. Hestenes[en], J. Holt. The Crystallographic Space groups in Geometric algebra // Journal of Mathematical Physics. — 2007. — Вып. 48, 023514.

Внешние ссылки

Эта страница в последний раз была отредактирована 22 марта 2024 в 15:10.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).