Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Сопряжённый оператор

Из Википедии — свободной энциклопедии

Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.

Линейная алгебра

Преобразование называется сопряжённым линейному преобразованию , если для любых векторов и выполнено равенство . У каждого преобразования существует единственное сопряжённое преобразование. Его матрица в базисе определяется по матрице преобразования формулой , если пространство евклидово, и формулой в унитарном пространстве. здесь обозначает матрицу Грама выбранного базиса. Если он ортонормированный, эти формулы принимают вид и соответственно.

Общее линейное пространство

Пусть  — линейные пространства, а  — сопряжённые линейные пространства (пространства линейных функционалов, определённых на ). Тогда для любого линейного оператора и любого линейного функционала определён линейный функционал  — суперпозиция и : . Отображение называется сопряжённым линейным оператором и обозначается .

Если кратко, то , где  — действие функционала на вектор .

Топологическое линейное пространство

Пусть  — топологические линейные пространства, а  — сопряжённые топологические линейные пространства (пространства непрерывных линейных функционалов, определённых на ). Для любого непрерывного линейного оператора и любого непрерывного линейного функционала определён непрерывный линейный функционал  — суперпозиция и : . Нетрудно проверить, что отображение линейно и непрерывно. Оно называется сопряжённым оператором и обозначается также .

Банахово пространство

Пусть  — непрерывный линейный оператор, действующий из банахова пространства в банахово пространство [1] и пусть  — сопряжённые пространства. Обозначим . Если  — фиксировано, то  — линейный непрерывный функционал в . Таким образом, для определён линейный непрерывный функционал из , поэтому определён оператор , такой что .

называется сопряжённым оператором. Аналогично можно определять сопряжённый оператор к линейному неограниченному оператору, но он будет определён не на всём пространстве.

Для справедливы следующие свойства:

  • Оператор  — линейный.
  • Если  — линейный непрерывный оператор, то также линейный непрерывный оператор.
  • Пусть  — нулевой оператор, а  — единичный оператор. Тогда .
  • .
  • .
  • .
  • .

Гильбертово пространство

В гильбертовом пространстве теорема Рисса даёт отождествление пространства со своим сопряжённым, поэтому для оператора равенство определяет сопряжённый оператор . Здесь  — скалярное произведение в пространстве .

См. также

Примечания

  1. Пространства предполагаются комплексными

Литература

  • Шефер Х. Топологические векторные пространства. — М.: Мир, 1971.
  • Ворович И.И., Лебедев Л.П. Функциональный анализ и его приложения в механике сплошной среды. — М.: Вузовская книга, 2000. — 320 с.
  • Треногин В. А. Функциональный анализ. — М.: Наука, 1980. — 495 с.
  • Функциональный анализ / редактор С.Г.Крейн. — 2-е, переработанное и дополненное. — М.: Наука, 1972. — 544 с. — (Справочная математическая библиотека).
  • Халмош П. Конечномерные векторные пространства = Finite-dimensional vector spaces. — М.: Физматгиз, 1963. — 264 с.
  • Шилов Г.Е. Математический анализ (функции одного переменного), часть 3. — М.: Наука, 1970. — 352 с.
  • Вайнберг М. М. Функциональный анализ. — М.: Просвещение, 1979. — 128 с.
Эта страница в последний раз была отредактирована 15 апреля 2021 в 14:20.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).