Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Эрмитово-сопряжённая матрица

Из Википедии — свободной энциклопедии

Эрми́тово-сопряжённая ма́трица (сопряжённо-транспони́рованная матрица) — матрица с комплексными элементами, полученная из исходной матрицы транспонированием и заменой каждого элемента комплексно-сопряжённым ему.

Например, если:

то:

.

Эрмитово-сопряжённые матрицы во многом играют ту же роль при изучении комплексных векторных пространств, что и транспонированные матрицы в случае вещественных пространств. Обобщение понятия эрмитово-сопряжённой матрицы на бесконечномерные пространства — сопряжённый оператор.

Энциклопедичный YouTube

  • 1/1
    Просмотров:
    620
  • Кванты алгебра и анализ | тухлый разговор о способности эрмитовых операторов коммутировать

Субтитры

Определения и обозначения

Если исходная матрица имеет размер , то эрмитово-сопряжённая к матрица будет иметь размер , а её -й элемент будет равен:

,

где  обозначает комплексно-сопряжённое число к (сопряжённое число к есть , где и  — вещественные числа).

Другая запись определения:

.

Эрмитово-сопряжённую матрицу обычно обозначают как или (от англ. Hermitian — эрмитова), но иногда применяются и другие обозначения, в частности,  (в квантовой механике) и  (но редко используется, так как может быть спутано с обозначением для псевдообратной матрицы).

Если матрица состоит из вещественных чисел, то эрмитово-сопряжённая к ней матрица — это просто транспонированная матрица , если .

Для квадратных матриц существует набор связанных определений — называется:

Свойства антиэрмитовых, нормальных и унитарных матриц могут быть выражены через свойства эрмитовых матриц и наоборот.

Свойства

Взаимодействия с операциями матричной алгебры:

  • для любых двух матриц и одинаковых размеров;
  • для любого комплексного скаляра ;
  • для любых матриц и , таких, что определено их произведение (в правой части равенства порядок перемножения матриц меняется на противоположный);
  • для любой матрицы .

Собственные значения, определитель и след меняются на сопряжённые у эрмитово-сопряжённой матрицы, по сравнению с исходной.

Матрица обратима тогда и только тогда, когда обратима матрица ; при этом:

для любой матрицы размера и любых векторов и . Обозначение обозначает стандартное скалярное произведение векторов в комплексном векторном пространстве.

Матрицы и являются эрмитовыми и положительно-полуопределёнными для любой матрицы (необязательно квадратной). Если квадратная и невырожденная, то эти две матрицы будут положительно-определёнными.

Ссылки

Эта страница в последний раз была отредактирована 18 декабря 2023 в 07:09.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).