Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Собственный полупроводник

Из Википедии — свободной энциклопедии

Собственный полупроводник или полупроводник i-типа или нелегированный полупроводник (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов, так как она определяется не легированием, а собственными свойствами материала, а именно термически возбуждёнными носителями, излучением и собственными дефектами. Технология позволяет получать материалы с высокой степенью очистки, среди которых можно выделить непрямозонные полупроводники: Si (при комнатной температуре количество носителей ni=pi=1,4·1010 см−3), Ge (при комнатной температуре количество носителей ni=pi=2,5·1013 см−3) и прямозонный GaAs.

Полупроводник без примесей обладает собственной электропроводностью, которая имеет два вклада: электронный и дырочный. Если к полупроводнику не приложено напряжение, то электроны и дырки совершают тепловое движение и суммарный ток равен нулю. При приложении напряжения в полупроводнике возникает электрическое поле, которое приводит к возникновению тока, называемого дрейфовым током iдр. Полный дрейфовый ток является суммой двух вкладов из электронного и дырочного токов:

iдр= in+ ip,

где индекс n соответствует электронному вкладу, а p — дырочному. Удельное сопротивление полупроводника зависит от концентрации носителей и от их подвижности, как следует из простейшей модели Друде. В полупроводниках при повышении температуры вследствие генерации электрон-дырочных пар концентрация электронов в зоне проводимости и дырок в валентной зоне увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Процесс гибели электрон-дырочных пар называется рекомбинацией. Фактически проводимость собственного полупроводника сопровождается процессами рекомбинации и генерации и если скорости их равны, то говорят что полупроводник находится в равновесном состоянии. Количество термически возбуждённых носителей зависит от ширины запрещённой зоны, поэтому количество носителей тока в собственных полупроводниках мало по сравнению с легированными полупроводниками и сопротивление их значительно выше.

Расчет равновесной концентрации свободных носителей заряда

Количество разрешённых состояний для электронов в зоне проводимости (определяемая плотностью состояний) и вероятность их заполнения (определяемая функцией Ферми — Дирака) и соответственные величины для дырок задают количество собственных электронов и дырок в полупроводнике:

,
,

где Nc, Nv — константы определяемые свойствами полупроводника, Ec и Ev — положение дна зоны проводимости и потолка валентной зоны соответственно, EF — неизвестный уровень Ферми, k — постоянная Больцмана, T — температура. Из условия электронейтральности ni=piдля собственного полупроводника можно определить положение уровня Ферми:

.

Отсюда видно, что в собственном полупроводнике уровень Ферми находится вблизи середины запрещённой зоны. Это даёт для концентрации собственных носителей

,

где Eg — ширина запрещённой зоны и Nc(v) определяется следующим выражением

где mc и mv — эффективные массы электронов и дырок в полупроводнике, h — постоянная Планка. Отсюда видно, что чем шире запрещённая зона полупроводника, тем меньше собственных носителей генерируется при данной температуре, и чем выше температура, тем больше носителей в полупроводнике.

Литература

  • Sze, Simon M. Physics of Semiconductor Devices (2nd ed.) (англ.). — John Wiley and Sons (WIE), 1981. — ISBN 0-471-05661-8.
  • Kittel, Ch. Introduction to Solid State Physics (неопр.). — John Wiley and Sons, 2004. — ISBN 0-471-41526-X.
Эта страница в последний раз была отредактирована 1 января 2020 в 07:18.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).