Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Синфазная и квадратурная составляющие сигнала

Из Википедии — свободной энциклопедии

Пример как фазомодулированный сигнал (зелёная линия) разлагается в две составляющие: синфазную  I ( t ) {\displaystyle I(t)}  и квадратурную  Q ( t ) {\displaystyle Q(t)} .
Пример как фазомодулированный сигнал (зелёная линия) разлагается в две составляющие: синфазную и квадратурную .

Синфазная и квадратурная составляющие — результат представления аналогового сигнала в виде комбинации:

,

где A1(t) называется синфазной составляющей (или I-составляющей, от англ. in-phase) сигнала , минус A2(t) называется квадратурной составляющей (или Q-составляющей, от англ. quadrature) сигнала :

Если прямой спектр сигнала S(t) ограничен интервалом частот [ω1, ω2], то ω0=(ω2+ω1)/2. Хоть это разложение может быть получено для любого сигнала с конечным спектром, наибольший интерес оно представляет для узкополосных сигналов, то есть для сигналов с небольшой шириной спектра. Для таких сигналов, и меняются медленно по сравнению с самим сигналом[1].

Это разложение лежит в основе квадратурной амплитудной модуляции (КАМ, англ. QAM). На основе же КАМ созданы и широко используются такие виды модуляции, как BPSK и QPSK.

Гармонический сигнал

Известно, что линейная комбинация гармонических колебаний с одинаковой частотой есть гармоническое колебание с той же частотой. Верно и обратное: любой гармонический сигнал можно разложить в сумму двух сигналов той же частоты, но смещённых по фазе. Удобней всего взять сдвиг по фазе на . Это значит, что любое гармоническое колебание можно представить в виде суммы двух функций и :

Здесь . Это подобно тому, как вектор в плоскости с полярными координатами разлагается в сумму двух векторов , где  — декартовы координаты исходного вектора.

Квазигармонический сигнал

Если сигнал не является чистым гармоническим сигналом, но является квазигармоническим, то есть сигналом вида , где амплитуда и фаза меняются со временем, но не очень быстро по сравнению с частотой , то мы всё равно можем разложить таким же образом:

Но теперь будут тоже зависеть от времени. Это и есть разложение на синфазную и квадратурную составляющие.

Комплексная огибающая

Для понятия смысла I/Q разложения полезно иметь представление о комплексной огибающей. Используя формулу Эйлера, комплексный сигнал , где  — мнимая единица, можно представить в виде , а в случае неравных значений амплитуд синусоидальной и косинусоидальной составляющих получим и тогда

Квадратурная модуляция

Основное применение I/Q разложения — это квадратурная модуляция. Радиотехнический сигнал описывается такими основными параметрами, как: амплитуда , несущая частота ω и начальная фаза φ.

Каждый из этих параметров с течением времени может меняться в определённых пределах. В характере изменения того или иного параметра может содержаться передаваемая с помощью сигнала информация. Изменение того или иного параметра сигнала называется модуляцией. Различают также несущий сигнал и модулирующий сигнал (тот, который «накладывается» на несущий). Аргумент косинуса называется полной фазой . Таким образом, можно говорить о том, что промодулированными могут быть либо амплитуда (амплитудная модуляция), либо полная фаза (частотная и фазовая модуляции). Несущая частота сигнала является величиной постоянной, поэтому при модуляции можно управлять всего двумя параметрами — амплитудой и фазой. С учётом вышесказанного сигнал можно представить в виде

Основная идея квадратурной модуляции заключается в том, что сигнал представляется в виде суммы двух синусоидальных составляющих, разность фаз которых равна 90° (π/2). Первая составляющая: . Вторая составляющая: . Путём изменения амплитуды I/Q-составляющих и их дальнейшим суммированием можно получить сигнал любого вида модуляции.

См. также

Примечания

  1. Зюко А. Г., Кловский Д. Д., Назаров М. В., Финк Л. М. Теория передачи сигналов. — М.: Связь, 1980. — С. 51. — 288 с.

Литература

  • Gast, Matthew. 802.11 Wireless Networks: The Definitive Guide (англ.). — 2. — Sebastopol,CA: O’Reilly Media, 2005. — Vol. 1. — P. 284. — ISBN 0596100523.
  • Franks, L.E. Signal Theory (неопр.). — Englewood Cliffs, NJ: Prentice Hall, 1969. — С. 82. — (Information theory). — ISBN 0138100772.
  • Steinmetz, Charles Proteus. Lectures on Electrical Engineering (неопр.). — 1. — Mineola,NY: Dover Publications, 2003. — Т. 3. — ISBN 0486495388.
  • Steinmetz, Charles Proteus (1917). Theory and Calculations of Electrical Apparatus 6 (1 ed.). New York: McGraw-Hill Book Company. B004G3ZGTM.
  • Wade, Graham. Signal Coding and Processing (неопр.). — 2. — Cambridge University Press, 1994. — Т. 1. — С. 10. — ISBN 0521412307.
  • Naidu, Prabhakar S. Modern Digital Signal Processing: An Introduction (англ.). — Pangbourne RG8 8UT, UK: Alpha Science Intl Ltd, 2003. — P. 29—31. — ISBN 1842651331.

Ссылки

Эта страница в последний раз была отредактирована 16 марта 2021 в 10:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).