Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Симметрическая разность

Из Википедии — свободной энциклопедии

Не следует путать с Разность множеств.
Диаграмма Эйлера — Венна для симметрической разности
Диаграмма Эйлера — Венна для симметрической разности

Симметри́ческая ра́зность двух множеств — теоретико-множественная операция, результатом которой является новое множество, включающее все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам. Другими словами, если есть два множества и , их симметрическая разность есть объединение элементов , не входящих в , с элементами , не входящими в . На письме для обозначения симметрической разности множеств и используется обозначение , реже используется обозначение или [1].

Определение

Симметрическую разность можно ввести двумя способами:

  • симметрическая разность двух заданных множеств и — это такое множество , куда входят все те элементы первого множества, которые не входят во второе множество, а, также те элементы второго множества, которые не входят в первое множество:
  • симметрическая разность двух заданных множеств и — это такое множество , куда входят все те элементы обоих множеств, которые не являются общими для двух заданных множеств.

Понятие симметрической разности можно обобщить на число множеств, большее двух.

Свойства

  • Любое множество обратно само себе относительно операции симметрической разности:
  • В частности, булеан с операцией симметрической разности является абелевой группой;
  • Булеан с операцией симметрической разности также является векторным пространством над полем
  • В частности, булеан с операциями пересечения множеств и симметрической разности является алгеброй с единицей.
  • Если роль «суммы» играет операция симметрической разности, а роль «произведения» — пересечение множеств, то множества образуют кольцо с единицей. Причём другие основные операции теории множеств, разность и объединение, можно выразить через них:
  • Объединение симметрической разности с пересечением двух множеств равно объединению исходных множеств

Пример

Пусть

Тогда

См. также

Примечания

  1. Мельников О. В., Ремеслеников В. Н., Романьков В. А. Общая алгебра. Том 1. — М., Наука, 1990. — с. 13

Литература

Эта страница в последний раз была отредактирована 13 декабря 2020 в 12:22.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).