Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Репер (аффинная геометрия)

Из Википедии — свободной энциклопедии

Репе́р (от фр. repèreзнак, исходная точка) или точечный базис (иногда слово «точечный» опускается) аффинного пространства — обобщение понятия базиса для аффинных пространств.

Репер аффинного пространства , ассоциированного с векторным пространством размерности , представляет собой совокупность точки (начала координат) и упорядоченного набора из линейно независимых векторов (то есть базиса в -мерном векторном пространстве ).[1] Это эквивалентно заданию упорядоченного набора из аффинно независимых точек . В этом случае, очевидно, векторы .

Координатами точки относительного репера называются координаты вектора относительно базиса . Точно так же, как при выборе базиса в векторном пространстве любой вектор этого пространства задается своими координатами, любая точка аффинного пространства задается своими координатами относительного выбранного репера.[1] Если относительно репера точка обладает координатами , а точка — координатами , то вектор имеет относительно базиса координаты [1]

Репер называется ортогональным (ортонормированным), если соответствующий ему базис является ортогональным (ортонормированным).

См. также

Примечания

  1. 1 2 3 Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия. — гл. 8, § 1. — М.: Физматлит, 2009.
Эта страница в последний раз была отредактирована 17 августа 2017 в 07:36.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).