Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Рекурси́вная фу́нкция (от лат. recursio — возвращение) — это числовая функция числового аргумента, которая в своей записи содержит себя же. Такая запись позволяет вычислять значения на основе значений , подобно рассуждению по индукции. Чтобы вычисление завершалось для любого , необходимо, чтобы для некоторых функция была определена нерекурсивно (например, для ).

Примеры

Пример рекурсивной функции, дающей n-ое число Фибоначчи:

[1]

Руководствуясь этой записью, мы можем вычислить для любого натурального n за конечное число шагов. Правда, по пути придётся дополнительно вычислить значения .

Замкнутая форма

В связи с накладными расходами полезно знать, есть ли у рекурсивной функции нерекурсивная (замкнутая) форма.

Замкнутая форма может быть найдена не для всех рекурсивных функций (соотношений). Для некоторых из них найдены лишь приближенные замкнутые формы. Некоторые рекурсивные соотношения, такие как факториал, считаются элементарными математическими операциями.

Например, рекурсивная функция, описывающая сумму чисел натурального ряда:

может быть переведена в замкнутую форму: .

Приложения

Рекурсивные функции играют важную роль в теории алгоритмов, так как многие алгоритмы имеют рекурсивную структуру.

Примечания

  1. Рекуррентная формула (рус.) // Википедия. — 2020-03-07.


Эта страница в последний раз была отредактирована 14 марта 2021 в 10:02.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).