Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Рангом системы строк (столбцов) матрицы с строк и столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы — наивысший из порядков всевозможных ненулевых миноров этой матрицы. Ранг нулевой матрицы любого размера ноль. Если все миноры второго порядка равны нулю, то ранг равен единице, и т.д.

Ранг матрицы — размерность образа линейного оператора, которому соответствует матрица.

Обычно ранг матрицы обозначается , , , или . Последний вариант свойственен для английского языка, в то время как первые два — для немецкого, французского и ряда других языков.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    51 680
    145 444
    115 351
    961
    15 427
  • ✪ Ранг матрицы
  • ✪ Что такое ранг матрицы - bezbotvy
  • ✪ Как найти ранг матрицы (пример) - bezbotvy
  • ✪ Линейная алгебра, 6 урок, Ранг матрицы
  • ✪ Вычислить ранг матрицы

Субтитры

Содержание

Определение

Пусть  — прямоугольная матрица.

Тогда по определению рангом матрицы является:

  • ноль, если  — нулевая матрица;
  • число , где  — минор матрицы порядка , а  — окаймляющий к нему минор порядка , если они существуют.

Теорема (о корректности определения рангов). Пусть все миноры матрицы порядка равны нулю (). Тогда , если они существуют.

Связанные определения

  • Ранг матрицы размера называют полным, если .
  • Базисный минор матрицы  — любой ненулевой минор матрицы порядка , где .
    • Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными строками и столбцами. (Они определены неоднозначно в силу неоднозначности базисного минора.)

Свойства

  • Теорема (о базисном миноре): Пусть  — базисный минор матрицы , тогда:
    1. базисные строки и базисные столбцы линейно независимы;
    2. любая строка (столбец) матрицы есть линейная комбинация базисных строк (столбцов).
  • Следствия:
    • Если ранг матрицы равен , то любые строк или столбцов этой матрицы будут линейно зависимы.
    • Если  — квадратная матрица, и , то строки и столбцы этой матрицы линейно зависимы.
    • Пусть , тогда максимальное количество линейно независимых строк (столбцов) этой матрицы равно .
  • Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями. Тогда справедливо утверждение: Если , то их ранги равны.
  • Теорема Кронекера — Капелли: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:
    • Количество главных переменных системы равно рангу системы.
    • Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.
  • Неравенство Сильвестра: Если A и B матрицы размеров и , то

Это частный случай следующего неравенства.

Линейное преобразование и ранг матрицы

Пусть  — матрица размера над полем (или ). Пусть  — линейное преобразование, соответствующее в стандартном базисе; это значит, что . Ранг матрицы  — это размерность образа преобразования .

Методы

Существует несколько методов нахождения ранга матрицы:

  • Метод элементарных преобразований
Ранг матрицы равен числу ненулевых строк в матрице после приведения её к ступенчатой форме при помощи элементарных преобразований над строками матрицы.
  • Метод окаймляющих миноров
Пусть в матрице найден ненулевой минор -го порядка . Рассмотрим все миноры -го порядка, включающие в себя (окаймляющие) минор ; если все они равны нулю, то ранг матрицы равен . В противном случае среди окаймляющих миноров найдется ненулевой, и вся процедура повторяется.

Литература

Эта страница в последний раз была отредактирована 3 октября 2019 в 02:01.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).