Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Разложение Холецкого

Из Википедии — свободной энциклопедии

Разложе́ние Холе́цкого (метод квадратного корня) — представление симметричной положительно-определённой матрицы в виде , где — нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме: , где — верхняя треугольная матрица. Разложение Холецкого всегда существует и единственно для любой симметричной положительно-определённой матрицы.

Существует также обобщение этого разложения на случай комплекснозначных матриц. Если — положительно-определённая эрмитова матрица, то существует разложение , где — нижняя треугольная матрица с положительными действительными элементами на диагонали, а эрмитово-сопряжённая к ней матрица.

Разложение названо в честь французского математика польского происхождения Андре-Луи Шолески[en] (1875—1918).

Алгоритм

Элементы матрицы можно вычислить, начиная с верхнего левого угла матрицы, по формулам

Выражение под корнем всегда положительно, если — действительная положительно-определённая матрица.

Вычисление происходит сверху вниз, слева направо, т. е. сперва , а затем .

Для комплекснозначных эрмитовых матриц используются формулы

Приложения

Это разложение может применяться для решения системы линейных уравнений , если матрица симметрична и положительно-определена. Такие матрицы часто возникают, например, при использовании метода наименьших квадратов и численном решении дифференциальных уравнений.

Выполнив разложение , решение можно получить последовательным решением двух треугольных систем уравнений: и . Такой способ решения иногда называется методом квадратных корней.[1] По сравнению с более общими методами, такими как метод Гаусса или LU-разложение, он устойчивее численно и требует примерно вдвое меньше арифметических операций.[2]

Разложение Холецкого также применяется в методах Монте-Карло для генерации коррелированных случайных величин. Пусть  — вектор из независимых стандартных нормальных случайных величин, а  — желаемая ковариационная матрица. Тогда вектор будет иметь многомерное нормальное распределение с нулевым математическим ожиданием и ковариационной матрицей .[3]

Реализация в математических пакетах программ

  • В SAS используется функция ROOT(matrix), входящая в пакет SAS IML.
  • В системах MATLAB, Octave, R разложение выполняется командой U = chol(A).
  • В Maple и NumPy существует процедура cholesky в модуле linalg.
  • В Mathematica используется процедура CholeskyDecomposition[A].
  • В MathCAD для разложения используется функция cholesky(A)
  • В GSL используется функция gsl_linalg_cholesky_decomp.
  • В библиотеке от Google ceres-solver[4].
  • В библиотеке Apache Commons Math (начиная с версии 2.0) используется класс CholeskyDecomposition[5].
  • В библиотеке Torch присутствует функция torch.potrf[6].
  • В библиотеке JAMA языка программирования java.
  • В библиотеке Intel Data Analytics Acceleration Library присутствует алгоритмcholesky::Batch.

Примечания

  1. Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — 840 с. — ISBN 9785060061239.
  2. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. 2.9 Cholesky Decomposition // Numerical Recipes in C. — 2nd edition. — Cambridge: Cambridge University Press. — ISBN 0-521-43108-5.
  3. Martin Haugh. Generating Correlated Random Variables Архивировано 5 января 2012 года..
  4. Ceres Solver — A Large Scale Non-linear Optimization Library (недоступная ссылка). Дата обращения: 7 сентября 2017. Архивировано 2 сентября 2017 года.
  5. CholeskyDecomposition.
  6. torch.potrf.
Эта страница в последний раз была отредактирована 25 февраля 2021 в 11:48.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).