Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Радикальная ось двух окружностей

Из Википедии — свободной энциклопедии

Радикальная ось двух пересекающихся окружностей

Радика́льная ось двух окружностей — геометрическое место точек, степени которых относительно двух заданных окружностей равны. Иными словами, равны длины четырёх касательных, проведенных к двум данным окружностям из любой точки M данного геометрического места точек.

Радикальная ось двух непересекающихся окружностей

Радикальная ось двух окружностей существует тогда и только тогда, когда окружности неконцентрические, и может быть определена как для окружностей, так и для точек (окружностей нулевого радиуса) и мнимых окружностей (мнимого радиуса).

Радикальная ось двух окружностей. Три возможных случая: 1) Окружности не пересекаются и ни одна из них не лежит внутри другой. 2) Окружности пересекаются. 3) Окружности не пересекаются и одна из них лежит внутри другой.

Свойства радикальной оси

  • Радикальная ось является прямой. Поскольку степень точки относительно окружности равна где коэффициенты A, B и C определяются через координаты центра и радиус окружности, то, приравняв степени точки относительно двух окружностей, получим а это уравнение прямой. Существует также доказательство этого факта с использованием только геометрических методов.
  • Радикальная ось перпендикулярна линии центров, что следует из симметричности обеих окружностей относительно линии центров.
  • Если P — точка на радикальной оси, то длины касательных из точки P к обеим окружностям равны — это следует из того, что степень точки равна квадрату длины отрезка касательной. В частности, радикальная ось делит пополам отрезки общих касательных.
Расширяющиеся окружности точек степени d относительно каждой из двух начальных окружностей и точки, принадлежащие радикальной оси (жёлтые).
  • Если окружности пересекаются в двух точках, то их радикальной осью будет прямая, проходящая через эти точки, если они касаются внешним образом — то радикальной осью будет общая внутренняя касательная, если внутренним — то общая касательная (единственная).
Построение радикальной оси двух окружностей
  • Если прямые, содержащие хорды и первой и второй окружности соответственно пересекаются на радикальной оси, то четырёхугольник вписанный. Это несложно доказать: пусть  — точка пересечения. По свойству степени точки, она равна а так как P лежит на радикальной оси, то она равна и Так как то точки и лежат на одной окружности. Верно и обратное: если две окружности пересечь третьей так, что  — общая хорда первой и третьей, а  — общая хорда второй и третьей, то прямые AB и CD пересекутся на радикальной оси первых двух окружностей, причём в так называемом радикальном центре трёх окружностей (см. ниже). На этом свойстве основано построение радикальной оси циркулем и линейкой: построим окружность, пересекающую две данные в четырёх точках, а затем опустим из их радикального центра перпендикуляр на линию центров.
Радикальный центр трёх окружностей
  • Радикальные оси трёх окружностей с неколлинеарными центрами пересекаются в одной точке, называемой радикальным центром. Пусть  — окружности, а  — точка пересечения радикальной оси окружностей и с радикальной осью окружностей и . Если  — степень точки относительно окружности то по определению радикальной оси и точка лежит на радикальной оси окружностей и
  • Геометрическое место центров окружностей, ортогональных двум данным, есть их радикальная ось с исключённой общей хордой (если она есть). См. рис.
Геометрическое место центров окружностей, ортогональных двум данным, находится на радикальной оси
  • Антигомологические хорды[уточнить] двух окружностей пересекаются на их радикальной оси (видимо, имеются в виду две хорды, проходящие через две пары антигомотетических точек двух окружностей, см. рис. ниже).
  • Пусть  — четырёхугольник, прямые и пересекаются в точке , и  — в . Тогда окружности, построенные на отрезках , и , как на диаметрах, имеют общую радикальную ось, на которой лежат точки пересечения высот треугольников , , и (прямая Обера — Штейнера).
Антигомотетические точки двух окружностей имеют хорды, которые пересекаются на радикальной оси

Ортогональность

  • Две окружности, пересекающиеся под прямым углом, называются ортогональными. Окружности можно считать ортогональными, если они образуют прямой угол друг с другом.
  • Две пересекающиеся в точках A и B окружности с центрами O и O' называются ортогональными, если являются прямыми углы OAO' и OBO' . Именно это условие гарантирует прямой угол между окружностями. В этом случае перпендикулярны радиусы (нормали) двух окружностей, проведенные в точку их пересечения. Следовательно, перпендикулярны и касательные двух окружностей, проведенные в точку их пересечения. Касательная окружности перпендикулярна радиусу (нормали), проведенному в точку касания. Обычно угол между кривыми — это угол между их касательными, проведенными в точке их пересечения.
  • Возможно другое дополнительное условие. Пусть две пересекающиеся в точках A и B окружности имеют середины пресекающихся дуг в точках C и D, то есть дуга равна дуге СB, дуга AD равна дуге DB. Тогда эти окружности называются ортогональными, если являются прямыми углы СAD и СBD.
Построение радикальной оси двух непересекающхся окружностей. Пояснения на рисунке. Радикальная ось показана красной

Следствия из свойств радикальной оси

  • На прямой, проходящей через точки касания двух вневписанных окружностей треугольника с двумя его сторонами, эти вневписанные окружности отсекают равные отрезки.
  • Последнее можно сформулировать так. Если 2 вневписанные окружности треугольника касаются 2 его разных сторон и 2 их продолжений в 4 точках касания, то образуемый 4 последними точками, как вершинами, четырехугольник есть равнобокая трапеция, у которой равны 2 боковые стороны, а также равны две диагонали (касательные к 2 окружностям).
  • Диагонали описанного около окружности шестиугольника, соединяющие противоположные вершины, пересекаются в одной точке (теорема Брианшона для окружности).

Ссылки

См. также

Эта страница в последний раз была отредактирована 29 апреля 2022 в 17:59.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).