Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Равномерная сходимость

Из Википедии — свободной энциклопедии

Пусть — произвольное множество, метрическое пространство, — последовательность функций. Говорят, что последовательность равномерно сходится[1] к функции , если для любого существует такой номер , что для всех номеров и всех точек выполняется неравенство

Обычно обозначается .

Это условие равносильно тому, что

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    907
    572
    1 063
    802
    811
  • Семинар 12. Равномерная сходимость функциональных рядов.
  • равномерная сходимость функциональных последовательностей
  • Поточечная и равномерная сходимость. А. Н. Кириллов
  • равномерная сходимость функциональных рядов
  • Cеминар 11. Равномерная сходимость функциональных последовательностей.

Субтитры

Свойства

  • Если линейное нормированное пространство и последовательности отображений и , равномерно сходятся на множестве , то последовательности и при любых также равномерно сходятся на .
  • Для вещественнозначных функций (или, более общо, если — линейное нормированное кольцо), последовательность отображений , равномерно сходится на множестве и ограниченное отображение, то последовательность также равномерно сходится на .
  • Если последовательность интегрируемых по Риману (по Лебегу) функций равномерно сходится на отрезке к функции , то эта функция также интегрируема по Риману (соответственно по Лебегу), и для любого имеет место равенство
        
    и сходимость последовательности функций
        
    на отрезке к функции
        
    равномерна.
  • Если последовательность непрерывно дифференцируемых на отрезке функций , сходится в некоторой точке , a последовательность их производных равномерно сходится на , то последовательность также равномерно сходится на , её предел является непрерывно дифференцируемой на этом отрезке функцией.

Примечания

  1. Кудрявцев Л. Д. Равномерная сходимость // Математическая энциклопедия : [в 5 т.] / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — Т. 4: Ок — Сло. — С. 787—789. — 1216 стб. : ил. — 150 000 экз.

Литература

  • Александров П. С. Введение в теорию множеств и общую топологию, М., 1977.
  • Колмогоров А. Н., Фомин С . В. Элементы теории функций и функционального анализа. 5-е изд., М., 1981.
  • Келли Дж. Л. Общая топология. 2-е изд., М., 1951.
  • Медведев Ф. А. К истории понятия равномерной сходимости рядов. // Историко-математические исследования. — М.: Наука, 1974. — № 19. — С. 75-93.
Эта страница в последний раз была отредактирована 17 ноября 2021 в 07:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).